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L o ABSTRACT
@ Let the finite group G act transitively and non-regularly on a finite set
. BOMSR Q whose cardinality | € | is greater than one. Use N to denote the full

s - set of fixed-point-free elements of G acting onQ along with the

e identity element. Write H to denote the stabilizer of somea € Qin G.
In the note, it is proved that the subset N is a subgroup of G if and only
if G is a Frobenius group. It is also proved G = <N> H, where <N> is the
subgroup of G generated by N.
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1. INTRODUCTION

Finite group G is a transitive permutation group acting on a set ), where | Q |> 1. We say
that an element g of G is a derangement if g acts fixed-point-freely onQ . Let N be the subset of G
consisting of all derangements together with the identity, so N is clearly a normal subset of G, but it
need not be a subgroup in general. We refer to N as the derangement kernel of G. Observe that G is
the union of the derangement kernel N together with all of point stabilizers, which are conjugate in G,
hence |N| > 1. Recall that a transitive action of G on Q2 is said to be a Frobenius action if every point
stabilizer is nontrivial but the intersection of any two point stabilizers is trivial. A group G is called a
Frobenius group when it has a Frobenius action on some set {2 whose cardinality is greater than one.
A celebrated theorem of Frobenius asserts that if G is a Frobenius group, then its derangement kernel
N is a proper subgroup of G ([5, Theorem 7.2]), and in that case N is called the Frobenius kernel. In [6],
it is proved that if all elements in N are involutions, then N is an elementary abelian 2-group such that
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either G = N or G is a Frobenius group with kernel N. In this note, we show that if the derangement
kernel N is a proper subgroup, then the action of G on € is of Frobenius. When N is a subgroup, it is
easy to prove G = NH, where H is a point stabilizer in G. In fact, there are other conditions to guarantee
G = NH. For example, we show that G = NH when G is 2-transitive on € (Proposition 2.4). Also we
prove that it is always true that G = <N>H, where <N> is the subgroup of G generated by N (Theorem
2.3). We even guess that G = NH whenever G has a transitive action on 2. However, we can neither
prove the claim nor give a counterexample. Under only the hypothesis that G acts transitively and
non-regularly on €2, the subset N is not generally a subgroup of G. We prove that N is a group if and
only if G is Frobenius group (Theorem2.1).

We mention that Frobenius groups play a prominent role in the theory of finite groups, they
usually act as either a starting point or a reduced goal (by the minimal counterexample argument)
when investigating some problems of group theory, for example, seel[1, 2, 8].

Unless otherwise stated, the notation and terminology is standard, as presented in [5].
2. RESULTS

The following result indeed shows that the derangement kernel N is a group exactly when G
is a Frobenius group or a regular group. If G is a regular group on Q, it is clear that |G|= | € |= |N]|
so N is a group.

Theorem 2.1 Let G be a transitive and non-regular group acting on 2 with the derangement kernel N,
then | Q | £ |N]. Furthermore, the following statements are equivalent.

1. The action of G on Q is Frobenius.

2. Theset Nis a subgroup of G.

3. Theequality | Q | = |[N] holds.
Proof. Write H forC () . Since G acts transitively onQ, it follows that | Q | = n = |G:H| and G=
NUC; (ey)U---UC,(e,), then we may deduce that |G| < [N| +n (|H|-1. Thus we get that |G|
< IN|+n|H|-n=|N| + |G:H||H| -n, hence | Q| =n<|N]|, as desired.
Now assume part 1. Then the derangement kernel N is just the Frobenius kernel, and Frobenius'
theorem([4, Satz V.7.6] or [5, Theorem 7.2]) yields that N is a group, part 2 follows.
Assuming part 2, we may deduce that| Q |=| 0516 | > | alN |=IN:C () I=IN]. Also | Q | < N[, we
have | Q | = [N|, yielding part 3.
Finally assume part 3. We have | Q | = |G:H|,so |G| = | Q | |H|. We are assuming that [N| = | Q | =
n,and thus |G| = [N||H]. By the definition of N, we have G=N UC; (o) U---UC; (), by writing
C, =Cs(e,)—{8},i=1,.., n, we furtherhave G=N UC, U---UC, .Since | C; | = [H| -1and |N| =
n, we derive that [N|[H| = |G| = | NUC; () U---UC () | < IN|+|C|+..+|C, | =N |+
n(|H] -1)=|N| + |NJ|(|H] -1)=|N||H]|. Equality holds and so the unions are pairwise disjoint, which
means C; (¢;) N C( aj) =1wheneveriand j are different, and hence by definition, the action of G

on 2 is Frobenius. The proof is finished.

Lemma 2.2. Let G act transitively on the setQ where |Q | >1, H=C (&) forar € Q and N a subset

of G. Then G=HNifand only ifa" =Q, wherea" ={a" |n € N}.
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Proof. If G=HN, thenQ = a® =a™ =a" , as wanted. Conversely, forg € G, let a? = p for B e
Q, thensince o =Q, there exists some ne Nsuch thata” = 3, thusa® =", sogn™' € H, hence
ge HN, and so G = HN, as desired.

Theorem 2.3. Let G be a transitive group acting on Q with the derangement kernel N and H =C, (@)

. Then the subgroup <N> is transitive on Q2 and < N>H = G. Furthermore, if NH is subgroup, then NH =
G.

Proof. Since N is a normal subset, it follows that <N> is a normal subgroup, and thus <N> H is a
subgroup that contains N. Now UgeG (< N > H)? contains N and all conjugates of H, and since G is
the union of N and the conjugates of H, it follows that U s (< N > H)® =G. Butitis a fact that if

the union of all conjugates of some subgroup of a group is the whole group, then the subgroup must

be the whole group. We have G = <N>H = H<N>. By Lemma 2.2, all ¢r; are in the <N>-orbit containing
@, , and thus <N> acts transitively on Q2 . Finally, suppose NH is a subgroup. Then NH contains both <N

>and H, so it contains <N > H = G, and thus NH = G. The proof is complete.

Observe that G may be expressible as G = NH even though N is not a subgroup, as shown in the
following consequence.

Proposition2.4. Let G act on the set Q ={a;;, a,,---» 0, }with the derangement kernel N and H =

C. (), n>1.If the action is 2-transitive, then G = NH.

Proof. Pick ge G - H and let & = ;. Choose 1# z € N and let al = o ;. By the 2-transitivity, we
know that H acts transitively on the difference set Q- {¢;}, and so there exists h € H such that
a;‘ =¢«;, then Zhgfl € H and so ge HNH. Because HNH = NHH = NH, it follows g € NH. We
therefore conclude G = NH, as desired.

It is known that Symmetric group S, and Alternating group A, are 2-transitive when n > 4. Thus they

have the above product form.
For the alternating group A, of degree 5, we may get via GAP ([3]) that

N ={(), (1,5,4,3,2), (1,4,2,5,3), (1,3,5,2,4), (1,2,3,4,5), (1,4,5,3,2), (1,2,4,3,5), (1,5,3,2,4), (1,4,5,2,3),
(1,5,4,2,3),(1,3,4,5,2),(1,5,3,4,2), (1,3,2,4,5), (1,3,2,5,4), (1,2,4,5,3), (1,5,2,3,4), (1,2,5,4,3), (1,4,3,2,5),
(1,2,3,5,4), (1,4,3,52), (1,3,4,2,5), (1,52,4,3), (1,4,2,3,5), (1,3,542), (1,2,53,4)}, and the
derangement kernel is N ={ (), (1,5,4,3,2), (1,4,2,5,3), (1,3,5,2,4),(1,2,3,4,5)}. It is actually a right

transversal for A,in A;, thus we achieve that A, = A/N =NA, (as N is a normal subset). As
(1,4,5,3,2)*(1,5,4,3,2) = (1,3)(2,5) € N, we see that N is not a group. (The nonabelian simple group A,
has a proper normal subset N and a nontrivial factorization form A, = NA,. This is really an

interesting thing! ) For Ay, we may also verify via GAP ([3]) that A; = AN = NA,.
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