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NOTATIONS
tmn : Polygonal number of rank n with size m

an . Pyramidal number of rank n with size m

Pr, : Pronic number of rank n
Ctm,n . centered Polygonal number of rank n with size m
Cf37n,3 . Centered Triangular Pyramidal number of rank n
Cf3,n,6 . Centered Hexogonal Pyramidal number of rank n
Fqn3 : Fourth Dimensional Figurate Triangular number of rank n

F4,n,4 . Fourth Dimensional Figurate Square number of rank n

Fqne : Fourth Dimensional Figurate Hexogonal number of rank n
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INTRODUCTION

The cubic diophantine equations offer an unlimited field of research by reason of their variety[1,2,3].
In particular,one may refer [4-9] for cubic equations with five unknowns.

It seems that much work has not been done in finding integral solutions of cubic equations with
multivariables.This has motivated as to search for cubic equations.This communication concerns with
the problem of finding integer solution to the cubic equation with eight variables given

3 3

by X~ + y3 +z23+wd=udyv3,ps +Q3.A few interesting relations between the solutions,

special numbers, figurative numbers and centered pyramidal numbers are obtained.

METHOD OF ANALYSIS
The diophantine equation representing a cubic equation with eight unknowns is

x3+y3+23+w3=U3+V3+P3+Q3 (1)
It is well-known that (1) is satisfied by octuple (2,3,10,11,1,5,8,12) .In what follows the process of
obtaining other choices of non-zero distinct integral solutions to (1) are illustrated.

PATTERN
Introducing the linear transformations

X=a+b+c
y=a-b-c
z=—-a—-b+c
w=-a+b-c
Ucames f [T 2
V=a-e-f
P=-a-e+f
Q=-a+e-f
in (1),it simplifies to
bc = ef (3)
Again,the substitution of the linear transformations
b=u+v,c=u-vie=p+q,f=p—q 4)
in (3) gives u2+q2 = p2+V2 (5)
The choice of v=kq, k>1 (6)
in (5) leads to u2=(k2—1)q2+p2, k>1 ©)
which is satisfied by
q=2rs
p:(kz—l)rz—s2 ............................................... (8)

u:(k2—1)r2+s2

Using (8),(6) and (4) in (2),the corresponding non-zero integral solutions of (1) are represented by
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x(k,r,s) = a+2(k2 —1)r2 + 252

y(k,r,s) = a—2(k2 —1)r2 — 252
z(k,r,s) =—a—4krs

w(k,r,s) =—a+ 4krs
U(k,r,s)=a+2(k?-1r? -2s?
V(Kk,r,s)=a—-2(k>-1r? +2s?
P(r,s) =—a—4rs

Q(r,s) =-a+4rs

Properties

Tk r.3)—y(er,s)-Ulk,r,.8)+ V(k,r,5)= 0{mod8§)
2[or.r) +allP(r+1l)+al=—-8R>

3. [o@.r) - Pr.r)|[w.r +10) - z(k.r +11)] =128kR>

4. z(k,r.3)+ wk.r,s)+ P(r.s)+ O(r,5) = 0(mod4)

5. U(28,8,8) = V(28,8,8) - 96F, ; ¢ + 48Cf3 ; 5 + 80t3 , = O(mod 40)
6. Each of the following is a nasty number [1]

(a) 3{}[}’{?‘*?2?‘} —x(r.r,r)—0Pr,—06Cf3 , ¢ + F4,,,,3]

(b) Q(r,3r) — P(r,3r)

W(az,r,s)—z(az,r,s)

Q(r,s)—P(r,s)

() 6

) S[X(Br,r,r} —y(3r, e w3 r, )+ Pl + Q(rrj]

7.w(r,2r,4r) —z(r,2r,4r) is a cubic integer

PATTERN
Rewrite (7) as (k2 —1)q2 + p2 —u? 1 9)
Assume u= (k2 —1)612 +b? (10)
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(1+i\/k27—1j(1—i\/k27—1)

and write 1 as 1= (11)
k2
substituting (11),(20) in (9),and employing method of factorization,define
2
(b+ ivk? —la) (1—i\/k2 —1)
p+i k2—1q= " (12)
Equating real and imaginary parts in(12),we get
» =é[&:3 — (k% —Da® - 2ab(k® - 1)
g = l[bz — (k% = Da® +2ab
k (13)

Choosing abykA, b by kB in (13),(10),(6) and employing (2), the corresponding non-zero integral
solutions of (1) are obtained as

(s =a+2k? |k? —DA? 248+ (B2 +AR)
ylor e =a—2k%|(k? —DAZ — 24 +(B? + AB)
zle,rs)=—a+ 21{3[(1{3 —af-24B- (B2 +ﬁ.B)]
wik,r,5) = —a— 21{3[(1{2 —1)A% - 2AB - (B2 +ﬁB}]
Utker,s)=a+k2B? — 20 — 1A% - 28Bk? - 2)- 212 4B
Vik,r,s) = a—k|2B? — 20k — 1147 — 24Bk? - 2y - 2k % AR
Plr.s) = —a—k|2B? —2(k? — 1A% - 24B(k? - 2) + 2% AB
Qir,s) = —a+k[2B? —20c? — DA% —24B % - 2)+ 2k AR
Properties
1.X(A,2A,A) - Y(A,2A,A) — 4CF4 p g +48F4 p g — 48CF3 p 3 —16t4 o = O(mod 24)
2.Q(A A2)— P(A A2)—4Cf3 p g —32t3 o = 0(mod 4)

3.W(A A A)-2z(A A A+ 4Cf32,A,6 is a nasty number

418 V{AE.A*A) - U{AE.A.A) + 1447y 44— 48C 3 46 — 24P1,— 48E4 4is a cubic integer
PATTERN
Rewrite (7) as u? - p2 = (k2 —1)q2 (14)
(14) can be written in the form of ratio as
u+p_(k2—1)q _A
q u-p B’

which is equivalent to the system of double equations

B>0 (15)
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Bu+Bp—-Aq=0
—Au+Ap+(k2—1)Bq:0

Applying the method of cross multiplication, we get

q=2AB
P=A% (K2 =DB? Lo (17)
u=A2+(k?-1)B?
In view of (17),(6) and (2), the corresponding non-zero integral solutions of (1) are given by
x(k, A B) =a+2A% +2(k? -1)B?
y(k, A B) =a-2A% —2(k? -1)B?
z(k, A,B) = —a—4kAB
w(k, A, B) = —a + 4kAB
U(k,A B)=a+2A% —2(k? -1)B?
V(k,AB)=a-2A% +2(k? -1)B?
P(A,B)=-a-4AB
Q(A,B)=-a+4AB

PATTERN
Introduction of the linear substitution

x=a+b,y=a-bU=a+cV=a-c 18)
P=A+B.O=A_B,z=A+CweA_C[™
in(2) leads to a(b? -c?) = A(B® -C?) (19)
Taking a=kA , k>1 (20)
in(19) it gives B2 ykc? =kb? +C2 1)
(21) can be written as
B2 +ke? = (kb? +C?)*1 22)
. | 1) +3 24/ |- 1) —32./% |
2
Write as 1 as E+D) (23)
Substituting (23) in (22) ,and employing the method of factorization, define
B ik = [Crle — 13— 2kb ] +i-k[b ik — 1) + 2]
k+1
Equating real and imaginary parts,we get
1
B=——ICik-1 - 2kh
7 (Clke— D - 2kb)
c= L(b(k—1)+2c]
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Replacing bby (k+1)b, Cby (k+1)C (25)
Using (25),(24),(20) in (8) and (2), the corresponding non-zero integral solutions of (1) are followed by
Xx=kA +(k+1)b
y=KA - (k+1)b
z=A+(k+1C
w=A-(k+1)C
U=kA+Dbk-1)+2C
V=KA-b(k-1)-2C
P=A+C(k-1)—2kb
Q=A-C(k-1)+2kb
PATTERN
Consider the identity

@+b)?+@-b)3-(a+c)®-(a-c)® =6a? -c?) (26)
Let A,B,C be three non-zero distinct integers such that
B+C+A  B+C-A

a=B-C,b= ,C (27)
2 2
Using (27) in (26),we have
L.H.S of (26)= 6A(B% —C?)
=(A+B)®+(A-B)° - (A-C)°-(A-C)® (28)

Substituting (27) in LH.S of (28) and simplifying, the corresponding values of octuple
(X, ya ZaW1U 1V; P,Q) are given by

3B-C+A
X="—"
2
_B-3C-A
2
z=(A+B)
w=(A-B)
U :3B—C—A
2
V = B-3C+A
2
P=(A+C)
Q=(A-C)
PATTERN
Taking U=a+p,p=a-p4 (29)
in (14 ) gives 4af = (k? -1)g?%, k>1 (30)
Assumption 0:=(k2 -1)p (31)
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in (30)leadsto Q=24

In view of (31) ,(29),(60,(4) and (2),the corresponding integral solutions of (1) are represented by

x:a+2k2,8
y:a—2k2ﬂ
z=-a-4kp
w=-a+4kp

U=a+2k’p-4p
V=a-2k?g+4p
P=—a—4p
Q=-a+4p

CONCLUSION

One may search for other pattern of solutions and their corresponding properties.
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