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ABSTRACT 
 
In this paper, we give a common fixed point theorem for four maps 
in complex valued b-metric spaces and obtain a generalization of 
theorem of R.K.Verma and H.K.Pathak [4]. 
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Introduction 

The study of metric spaces expressed the most important role to many fields both in pure 

and applied science such as biology, medicine, physics, and computer science. Many authors 

generalized and extended the notion of a metric space such as a vector valued metric 

spaces, G-metric spaces, a cone metric space and a modular metric spaces and etc. 

The concept of b-metric space was introduced by Czerwik[2]. Several papers deal with fixed 

point theory for single valued and multivalued operators in b-metric spaces.  
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Recently, Azam et al.[1] first introduced the complex valued metric spaces which is more 

general than well-known metric spaces and also gave common fixed point theorems for 

mappings satisfying generalized contraction condition. This new idea can be utilized to 

define complex valued normed spaces and complex valued inner product spaces. Several 

authors studied many common fixed point results on complex valued metric spaces (see[5-

7]). 

In this paper, we give a common fixed point theorem for four maps in complex valued  
b-metric spaces and obtain a generalization of theorem of R.K.Verma and H.K.Pathak [4 ]. 
 

2. Preliminaries 

Let C be the set of complex numbers and ,, 21 Czz  Define a partial order   and   on C as 

follows: 
(i) z1   z2 if and only if Re(z1) < Re(z2) and Im(z1) < Im(z2); 

(ii)  z1  z2 if and only if Re(z1) ≤ Re(z2) and Im(z1) ≤ Im(z2). 

 
It follows that z1   z2, if one of the following conditions is satisfied 

(i) Re(z1) = Re(z2),  Im(z1) < Im(z2), 

(ii) Re(z1) < Re(z2),  Im(z1) = Im(z2), 

(iii)  Re(z1) < Re(z2),  Im(z1) < Im(z2), 

(iv)  Re(z1) = Re(z2),  Im(z1) = Im(z2). 

 

In (i), (ii) and (iii), we have .21 zz In (iv), we have .21 zz So .21 zz  

In particular, z1  z2 if z1 ≠ z2 and one of (i), (ii) and (iii) is satisfied, In this case .21 zz  

We will write z1   z2 if only (iii) satisfied. 
 
It follows 

(i) 0 z1  z2 implies ,21 zz
 

(ii)  z1  z2 and z2   z3 implies z1  z3, 

(iii) 0 z1  z2 implies ,21 zz
 

(iv) andbaRba 0,, z1  z2 implies az1 z2.   

     

Now, we briefly review the notation about complex valued b-metric space.  

Definition 2.1:  Let X be a nonempty set and s ≥ 1 a given real number. A function                 

d: XxX→C  is called a complex valued b-metric (cvbm) if  it satisfies the following 

(cvbm-1) 0  d(x,y) and d(x,y) = 0 if and only if x = y for all ;, Xyx  

(cvbm-2) d(x,y) = d(y,x) for all ;, Xyx  

(cvbm-3) d(x,y)  s[d(x,z) + d(z,y)] for all  .,, Xzyx  
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The pair  (X,d) is called a complex valued  b-metric space. 

Definition 2.2: Let (X,d) be a complex valued b-metric space. 

(i) A point Xx is called interior point of a set XA  whenever there exists 

Cr0 such that B(x,r) =  

(ii) A point Xx is called limit point of a set XA  whenever for every Cr0

such that B(x,r)   

(iii)  A subset XB is called open whenever each element of B is an interior point of 

B. 

(iv) A subset XB is called closed whenever each limit point of B belongs to B. 

(v) The family F = {B(x,r) : randXx 0, } is a sub basis for a topology on X. We 

denote this complex topology by
c
. Indeed, the topology 

c
is Hausdorff. 

Definition 2.3 : Let (X,d) be a complex valued b-metric space, and let {xn} be a sequence in 

X and Xx .  

(i)  If for every Cc  with c0 there is Nn0  such that for all n > n0 , d(xn,x)  c, 

then {xn} is said to be convergent, {xn} converges to x and x is limit point of {xn}. We 

denote this by xn→ x as n → ∞ or .lim xxn
n

 

(ii) If for every Cc  with c0 there is Nn0  such that for all n > n0, d(xn,xn+m )  c, 

where ,Nm then {xn} is said to be Cauchy sequence.  

(iii)  If every Cauchy sequence is convergent in (X,d), then (X,d) is called a complete 

complex valued b-metric space. 

       One can prove the following lemmas in similar lines as in [1]. 

Lemma 2.4 : Let (X,d) be a complex valued b-metric space, and let {xn} be a sequence in X. 

Then, {xn} converges to x if and only if .0),( nasxxd n      

Lemma  2.5 : Let (X,d) be a complex valued b-metric space, and let {xn} be a sequence in X. 

Then, {xn} is a Cauchy sequence if and only if .,0),( Nmwherenasxxd mnn    

Definition 2.6([3]): Let S and T be two self-maps defined on a set X. The mappings S and T 

are weakly compatible if STx = TSx whenever Sx = Tx. 

3. MAIN RESULTS 

Theorem 3.1:   Let (X,d) be a complex valued b-metric space and let S,T,A and B are four self 

maps on X such that 

(i) S(X) B(X) and T(X)  A(X) 

(ii)  
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Suppose that the pairs (S, A) and (T, B) are weakly compatible and T(X) is closed. 

Assume that 
ss

q
2

1
0 .  

Then S, T, A and B have unique common fixed point in X.      

Proof:  Since
2

1
q

s s
, we have 0 ≤ q <1. 

Suppose x0 is an arbitrary point of X and define the sequence {xn} and {yn} in X such that 

                    y2n = Sx2n = Bx2n+1 and y2n+1 = Tx2n+1 = Ax2n+2 for all n = 0,1,2,3,…. 

d(y2n,y2n+1) = d(Sx2n,Tx2n+1) 

      q max {d(Ax2n,Bx2n+1), d(Ax2n, Sx2n), d(Bx2n+1,Tx2n+1),d(Ax2n,Tx2n+1),                      

                                                                                                                 d(Bx2n+1,Sx2n)} 

      q max {d(y2n-1,y2n), d(y2n-1,y2n), d(y2n,y2n+1), d(y2n-1,y2n+1), d(y2n,y2n)} 

      q max {d(y2n-1,y2n), d(y2n,y2n+1), s[d(y2n-1,y2n) + d(y2n,y2n+1)]}        (3.1) 

If y2n-1 = y2n, for some n then from (3.1), d(y2n,y2n+1)  qs d(y2n,y2n+1).  

Hence d(y2n,y2n+1)  = 0  so that y2n = y2n+1. 

Continuing in this way we can show that  

y2n-1 = y2n = y2n+1 = ………. 

Hence {yn} is a Cauchy sequence. 

Now assume that yn ≠ yn+1 for all n. 

For simplicity, write d2n = d(y2n,y2n+1). From (3.1), we have 

d2n q max { d2n-1, d2n, s(d2n-1 + d2n) }      (3.2) 

If max { d2n-1, d2n, s(d2n-1 + d2n) }= d2n then from (3.2)  d2n   q d2n, which is a contradiction 

since 0 ≤ q <1.  

Therefore, (3.2) becomes d2n q max { d2n-1, s(d2n-1 + d2n) }. 

Thus d2n γ d2n-1, for all Nn                                                                               (3.3) 

where 
sq

sq
q

1
,max . 

Similarly we can show that d2n-1 γ d2n-2, for all Nn .                           (3.4)  

Thus from (3.3) and (3.4), we have dn γ dn-1 which in turn yields that  

dn γn d0  for all n=1,2,3,……..                                                                 (3.5) 

If  γ = q  then  1
2

1

1

1

)(

1
2 sss

ss . 

If  
sq

sq

1
 then 1

1

1
1

1

1

1

s

ss
sq

sq
ss . 

Thus γs < 1.                                                                                                    (3.6)  

Now for Nnm,  with n < m, we have 

d(yn,ym)  s d(yn,yn+1) +  s2 d(yn+1,yn+2) +  s3d(yn+2,yn+3) + ----------+ sm-n d(ym-1,ym)  
              γn s d(y0, y1) + γn+1 s2 d(y0, y1) + ----------+ γm-1 sm-n d(y0, y1),  from (3.5) 
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              γn s (1 + γs + γ2 s2 +…………) d(y0, y1)   

              ),(
1

),( 10 yyd
s

s
yyd

n

mn

   
  → 0 as n,m → ∞.                                                                                                  

Hence {y n } is  a Cauchy sequence . Since X is complete, there exists Xz  such that yn→z. 

Since T(X) is closed, so .)(XTz     
Since T(X)  A(X) then there exists Xu such that z = Au. 

Now we show that Su = Au = z. 
 

  q max{d(Au,Bx2n+1), d(Au,Su), d(Bx2n+1,Tx2n+1), d(Au, Tx2n+1),           

                                                                                         d(Bx2n+1,Su)}+d(Tx2n+1,z)  

  q max {d(z,y2n), d(z,Su), d(y2n,y2n+1), d(z,y2n+1),d(y2n,Su)} + d(y2n+1,z) 

 

SuzimplieszSudhaveweqsSince 0),(,12  . Therefore Su = Au = z. 

Since z = Su S(X) B(X) then there exists v in X such that z = Bv. 

Now we show that Tv = Bv = z. 

 

 

  q max{d(Ax2n,Bv), d(Ax2n,Sx2n), d(Bv,Tv), d(Ax2n, Tv),           

                                                                                         d(Bv,Sx2n)}+d(Sx2n,z)  

  q max {d(y2n-1,z), d(y2n-1, y2n), d(z,Tv), d(y2n-1,Tv),d(z, y2n)} + d(y2n,z) 

 

TvzimplieszTvdhaveweqsSince 0),(,12  . Therefore Tv = Bv = z. 

Since S and A are weakly compatible and  Au =Su= z, we  have Sz = Az. Now 
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  q max{d(Az,Bx2n+1), d(Az,Sz), d(Bx2n+1,Tx2n+1), d(Az, Tx2n+1),           

                                                                                         d(Bx2n+1,Sz)}+d(Tx2n+1,z)  

  q max{d(Sz,y2n), d(Sz,Sz), d(y2n,y2n+1), d(Sz,y2n+1),d(y2n,Sz)} + d(y2n+1,z) 

 

SzzimplieszSzdhaveweqsSince 0),(,12  . Therefore Sz = Az = z. 

Since T and B are weakly compatible and Tv = Bv = z ,we  have Tz = Bz.Now 

 

 

  q max{d(Ax2n,Bz), d(Ax2n,Sx2n), d(Bz,Tz), d(Ax2n, Tz),           

                                                                                    d(Bz,Sx2n)}+d(Sx2n,z)  

  q max {d(y2n-1,Tz), d(y2n-1, y2n), d(Tz,Tz), d(y2n-1,Tz),d(Tz, y2n)} + d(y2n,z) 

 

TzzimplieszTzdhaveweqsSince 0),(,12  . Therefore Tz = Bz = z. 

Therefore z is common fixed point of S,T,A and B.  

Uniqueness 

Let w be another fixed point of S, T, A and B. 

Then Sw = Tw = Aw = Bw = w 

d(z,w) = d(Sz,Tw)                             

                               =  q d(z,w) 

Thus  we have  ( , )d z w  q ( , )d z w  ,which in turn yields that z = w .                                                                                                                   

Hence  z is the unique common fixed point of S,T,A and B. 

 
Remark 3.2: By taking s = 1, A = B = Identity map in Theorem 3.1, we get Theorem 2.1 of 
R.K.Verma and H.K.Pathak [4]. 
  

Corollary 3.3:   Let (X,d) be a complex valued metric space and let S,T,A and B are four self 

maps on X such that 

 (i)S(X) B(X) and T(X)  A(X) 



 
A Common Fixed Point Theorem ….                                                                                                  K.P.R Rao

 
et al., 

 

7 
Vol.1.Issue.1.2013     

Bull .Math.&Stat.Res  

(ii)  

Suppose that the pairs (S, A) and (T, B) are weakly compatible and T(X) is closed. 

Assume that
2

1
0 q . Then S, T, A and B have unique common fixed point in X.      

Now we give an example to illustrate Theorem 3.1 

EXAMPLE 3.4: Let (X,d) be a Complex Valued b-metric space, where X = [0,1] and  

                       d:XxX→C by d(x,y) = 
2

yx +i
2

yx .  

 

 
 
Here s = 2. 

Define S, T, A and B: X→X by Sx = 
18

x
 ,    Tx = 

27

2x
, Ax = 

2

x
  and Bx = 

3

2x
 

d(Sx, Ty) = 

2
2

2
2

2
2

2
2

323281

1

27182718

yx
i

yxyx
i

yx
 

d(Ax, By) = 

2
2

2
2

3232

yx
i

yx
 

d(Sx, Ty) = 
81

1
d(Ax, By) 

Here q = 
6

11

81

1
2 ss  

All conditions of the Theorem 3.1 are satisfied. Clearly ‘0’ is the unique common fixed point 

of S, T, A and B . 
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