http://www.bomsr.com

AND THE AND TH

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

REMARKABLE OBSERVATIONS ON THE HYPERBOLA $y^2 = 24x^2 + 1$

M.A.GOPALAN, S.VIDHYALAKSHMI, J.UMARANI

Department of Mathematics, Shrimati Indira Gandhi College, Trichy

J.UMARANI Author for Correspondence Article Info: Article received :21/09/2013 Revised on:28/10/2013 Accepted on:01/11/2013

ABSTRACT

The binary quadratic equation $y^2 = 24x^2 + 1$ is considered and a few interesting properties among the solutions are presented. Employing the integral solutions of the equation under consideration, a few special pythogorean triangles are obtained.

Keywords: binary quadratic, hyperbola, integral points.

MSC2000 subject classification No: 11D09

INTRODUCTION

The binary quadratic equation of the form $y^2 = Dx^2 + 1$ where D is non-square positive integer has been studied by various mathematicians for its non-trivial integral solutions when D takes different integral values [1,2,3,4]. In [6] infinitely many pythogorean triangles in each of which hypotenuse is four times the product of the generators added with unity are obtained by employing the non-integral solutions of binary quadratic equation $y^2 = 3x^2 + 1$. In [7], a special pythogorean triangle is obtained by employing the integral solutions of $y^2 = 10x^2 + 1$. In [13], different patterns of infinitely many pythogorean triangles are obtained by employing the non-integral solutions of $y^2 = 12x^2 + 1$. In this context one may also refer[8 – 14]. These results have motivated us to search for the integral solutions of yet another binary quadratic equation $y^2 = 24x^2 + 1$ representing a hyperbola.

Notations Used:

 $t_{m,n}$ = Polygonal number of rank n with size m.

 P_n^m = Pyramidal number of rank n with size m.

 CP_n^m = Centered pyramidal number or rank n with size m.

 $CP_{m,n}$ = Centered polygonal number or rank n with size m.

 GNO_n = Gnomonic number of rank n.

 S_n = Star number of rank n.

METHOD OF ANALYSIS

The binary quadratic equation representing hyperbola is

$$y^2 = 24x^2 + 1$$
 (1)
general solution (x_n, y_n) is given by $x_n = \frac{g}{4\sqrt{2}}, y_n = \frac{f}{2}$ where

Whose

(1)

$$f = (5 + 2\sqrt{6})^{n+1} + (5 - 2\sqrt{6})^{n+1} \text{ and } g = (5 + 2\sqrt{6})^{n+1} - (5 - 2\sqrt{6})^{n+1} \text{ ,n = 0,1,2...}$$

The recurrence relations satisfied by x and y are given by 10 1 - 0 5 10

$$y_{n+2} - 10y_{n+1} + y_n = 0, y_0 = 5, y_1 = 49$$

 $x_{n+2} - 10x_{n+1} + x_n = 0, x_0 = 1, x_1 = 10$

Some numerical examples of x and y satisfying (1) are given in the following table:

n	X_n	${\mathcal{Y}}_n$
0	1	5
1	10	49
2	99	485
3	980	4801
4	9701	47525
5	96030	470449
6	950599	4656965
7	9409960	46099201
8	93149001	456335045
9	922080050	4517251249
10	9127651499	44716177445

From the above table we observe some interesting properties:

1. y_n and x_{2n} are always odd.

$$2. y_{2n} \equiv 0 \pmod{5}$$

3.
$$x_{2n+1} \equiv 0 \pmod{5}$$

4.
$$x_{2n+1} \equiv 0 \pmod{10}$$

5.
$$x_{n+2} = 2y_{n+1} + x_n$$

A few interesting properties between the solutions and special numbers are given below:

1. $10\,y_{2n+2}-48\,x_{2n+2}+2\,$ is a Perfect Square.

2.
$$6(10y_{2n+2} - 48x_{2n+2} + 2)$$
 is a Nasty number.
3. $(10y_{3n+3} - 48x_{3n+3}) + 3(10y_{n+1} - 48x_{n+1})$ is a Cubic integer.
4. $6(10y_{2n+2} - 48x_{2n+2} + 48x_{n+1} - 10y_{n+1}) + 1 = Sf$
5. $2(10y_{n+1} - 48x_{n+1}) - 1 = GfOf$
6. $2t_{m,f} = (m-2)[10y_{2n+2} - 48x_{2n+2} + 2] + (4-m)[10y_{n+1} - 48x_{n+1}], m \ge 3$
7. $2CP_{m,f} = m[(m-2)(10y_{2n+2} - 48x_{2n+2} + 2) + (4-m)(10y_{n+1} - 48x_{n+1})] + 2, m \ge 3$
8. $6CP_{f}^{m} = m(10y_{3n+3} - 48x_{3n+3}) + 2(m+3)(10y_{n+1} - 48x_{n+1}), m \ge 3$
9. $6P_{f}^{m} = (m-2)(10y_{3n+3} - 48x_{3n+3}) + 3(10y_{2n+2} - 48x_{2n+2} + 2) + (2m-1)(10y_{n+1} - 48x_{n+1}), m \ge 3$
10. Let $y = 10y_{n+1} - 48x_{n+1}, x = (5x_{n+1} - y_{n+1})$. Then the pair (x, y) satisfies the hyperbola

 $y^2 = 96x^2 + 4$.

REMARKABLE OBSERVATIONS:

1. Let α be any non-zero positive integer such that $\alpha_s = \frac{y_s - 1}{2}$.

It is seen that $2t_{3,\alpha_s}$ is a Nasty number.

- 2. Let m and n be any two non-zero distinct positive integers such that $m_s = x_s, n_s = \frac{y_s 1}{6}, s = 1,3,5...$ Note that $m_s > n_s > 0$. Therefore, taking m_s and n_s as the generators of a Pythagorean triangle, then its leg $(m_s^2 n_s^2)$ is represented by the triangular number of rank n_s .
- 3. Let p,q be the generators of the pythagorean triangle $T(\alpha, \beta, \gamma)$ with $\alpha = 2pq, \beta = p^2 q^2, \gamma = p^2 + q^2, p > q > 0$. Let $p_s = x_s + y_s$ and $q_s = x_s$, then the Pythagorean triangle T satisfies the relations

(i)
$$\alpha - 12\beta + 11\gamma + 1 = 0$$

(ii) $\frac{4A}{P} + 1 = 13\beta - 12\gamma$
(iii) $13\alpha - \gamma = 48\frac{A}{P} - 1$

where A and P represent the Area and Perimeter of the Pythagorean triangle T.

4. Let m, n be any two non-zero distinct positive integers.

(i) Let $m_s = \frac{x_{2s} - 1}{2}, n_s = \frac{y_{2s} + 3}{8}, s = 1,2,3...$ Note that $t_{10,n_s} = 12t_{3,m_s} + 1$ (ii) Let $m_s = \frac{x_{2s} - 1}{2}, n_s = \frac{y_{2s} - 1}{2}, s = 1,2,3...$ Note that $CP_{8,n_s} = 198t_{3,m_s} + 25$

(iii) Let
$$m_s = \frac{x_{2s} - 1}{2}, n_s = \frac{y_{2s} + 1}{3}, s = 1, 2, 3....$$

Note that $t_{12,n_s} + t_{6,n_s} = 192t_{3,m_s} + 24$

(iv) Let
$$m_s = \frac{x_{2s} - 1}{2}, n_s = \frac{y_{2s} + 1}{2}, s = 1, 2, 3...$$

Note that
$$t_{12,n} + t_{24,n} - GNO_n = 768t_{3,m} + 97$$

CONCLUSION

To conclude, one may search for other pattern of solutions and their corresponding properties. **REFERENCES**

- [1]. Dickson L.E., 'History of Theory of Numbers', Vol.2, Chelsea Publishing Company, Newyork, 1952
- [2]. Mordell L.J., Diophantine Equaions, Academic Press, Newyork, 1969.
- [3]. Telang S.J., Number Theory, Tata Mc grew Hill Publishing Company Limited, New Delhi, 2000

[4]. David Burton, Elementary Number Theory, Tata Mc grew Hill Publishing Company Limited, New Delhi, 2002

[5]. Gopalan M.A., viyayalakshmi.S and Devibala .S., On the Diophantine Equation $3x^2 + xy = 14$, Acta Ciencia Indica, Vol.XXXIII, M.No.2, 645 -648,2007.

[6]. Gopalan M.A and Janaki.G., Observation on $y^2 = 3x^2 + 1$, Acta Cinancia,xxx1vm, No.2,693-696,2008.

[7].Gopalan M.A and Sangeetha.G., A Remarkable Observation on $y^2 = 10x^2 + 1$, Impact Journal of Sciences and Technology, Vol.No.4, 103-106, 2010

[8]. Gopalan M.A , Srividhya.G., Relations among M-gonal Number through the equation $y^2 = 2x^2 + 1$, Antarctica Journal of Mathematics 7(3), 363 – 369,2010

[9]. Gopalan M.A., Vijayasankar.R., Observation on the integral solutions of $y^2 = 5x^2 + 1$, Impact Journal of Science and Technology, Vol.No.4, 125-129,2010

[10]. Gopalan M.A and Yamuna R.S., Remarkable Observation on the binary quadratic Equation $y^2 = (k^2 + 1)x^2 + 1, k \in z - \{0\}$, Impact Journal of Science and Technology, Vol.No.4, 61-65, 2010

[11]. Gopalan M.A., and Sivagami.B., Observation on the integral solutions of $y^2 = 7x^2 + 1$, Antarctica Journal of Mathematics, 7(3), 291-296,2010.

[12]. Gopalan M.A., and Vijayalakshmi R.,Special Pythagorean triangles generated through the integral solutions of the equation $y^2 = (k^2 - 1)x^2 + 1$, Antarctica Journal of Mathematics, 795, 503-507,2010

[13]. Gopalan M.A., Palanikumar.R., Observation on $y^2 = 12x^2 + 1$, Antarctica Journal of Mathematics 8(2),149-152,2011

[14]. Gopalan M.A., Vidhyalakshmi.S, T.R.UshaRani., and S.Mallika, Observations on $y^2 = 12x^2 - 3$, Bessel Journal of Math,2(3),153. 158, 2012