Vol.2.Issue.3.2014

http://www.bomsr.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

INTEGRAL POINTS ON THE HYPERBOLA $x^2 - 4xy + y^2 + 11x = 0$

M.A. GOPALAN¹, S.VIDHYALAKSHMI², J.SHANTHI³

^{1,2,3}Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy

Article Info: Article received :19/08/2014 Revised on:22/09/2014 Accepted on:26/09/2014

ABSTRACT

This paper concerns with the problem of obtaining infinitely many non-zero distinct integer solutions of the binary quadratic Diophantine equation representing hyperbola given by $x^2 - 4xy + y^2 + 11x = 0$. Employing the lemma of Brahmagupta, infinitely many integral solutions of the above equation are obtained. The recurrence relations on the solutions are presented. A few interesting relations among the solutions are also given.

Key words: Binary quadratic, Hyperbola, Pell equation, Integer solutions

2010 Mathematics subject classification: 11D09

INTRODUCTION

The binary quadratic Diophantine equations offer an unlimited field for research because of their variety [1,2]. For an extensive review of various problems one may refer [3-21]. This communication concerns with yet another interesting binary quadratic equation $x^2 - 4xy + y^2 + 11x = 0$ representing hyperbola for determining its infinitely many non zero integral solutions. Also, a few interesting relations among the solutions are presented.

Method of analysis

The Diophantine equation to be solved for its non-zero distinct integral solution is

$$x^2 - 4xy + y^2 + 11x = 0 \tag{1}$$

Treating (1) as a quadratic in y, we get

$$y = 2x \pm \sqrt{3x^2 - 11x}$$
 (2)

Let

$$\alpha^2 = 3x^2 - 11x \tag{3}$$

Using (3) in (2) we have

 $X^2 = 12\alpha^2 + 11^2$ (4)

where
$$X = 6x - 11$$
 (4a)

The initial solution of (4) is

$$\alpha_0 = 2 \& X_0 = 13$$

Now consider the Pell equation

$$X^2 = 12\alpha^2 + 1 \tag{5}$$

whose fundamental solution is $(\widetilde{\alpha_0}, \widetilde{X_0}) = (2,7)$. The other solutions of (4) can be derived from the relations

$$\begin{split} \widetilde{X_n} &= \frac{f_n}{2} \text{ and } \widetilde{\alpha_n} = \frac{g_n}{4\sqrt{3}} \\ f_n &= \left[\left(7 + 4\sqrt{3}\right)^{n+1} + \left(7 - 4\sqrt{3}\right)^{n+1} \right] \\ g_n &= \left[\left(7 + 4\sqrt{3}\right)^{n+1} - \left(7 - 4\sqrt{3}\right)^{n+1} \right], \qquad n=0,1,2,3...... \end{split}$$

where

Applying the lemma of Brahmagupta between (α_0, X_0) and $(\widetilde{\alpha_n}, \widetilde{X_n})$, the other solutions of (4) can be obtained from the relations

$$\alpha_{n+1} = f_n + \frac{13}{4\sqrt{3}} g_n$$

$$X_{n+1} = 13 \frac{f_n}{2} + \frac{6}{\sqrt{3}} g_n$$
(6)

Taking the positive sign in the RHS of (2) and using (4a) and (6), the non-zero distinct integer solutions of the hyperbola (1) are represented by

$$\begin{array}{c} x_{n+1} = \frac{1}{12} \left[13f_n + 4\sqrt{3}g_n + 22 \right] \\ y_{n+1} = \frac{1}{12} \left[38f_n + 21\sqrt{3}g_n + 44 \right] \end{array}$$
(7)

where n= 0,1,2,3......

Some numerical examples are presented	below:
---------------------------------------	--------

n	<i>x</i> _{<i>n</i>+1}	y_{n+1}
0	25	90
1	324	1206
2	4489	16750
3	62500	233250

The recurrence relations satisfied by the solutions of (1) are given by

$$y_{n+3} - 14y_{n+2} + y_{n+1} = -44$$

$$x_{n+3} - 14x_{n+2} + x_{n+1} = -22$$

A few interesting relations among the solutions are as follows:

1.	$1452x_{n+3} + 21780x_{n+1} - 81312y_{n+1} = -255552$
2.	$1452x_{n+2} + 1452x_{n+1} - 5808y_{n+1} = -15972$
3.	$1452y_{n+2} + 5808x_{n+1} - 21780y_{n+1} = -63888$
4.	$1452y_{n+3} + 81312x_{n+1} - 303468y_{n+1} = -958320$
5.	$6[252x_{2n+2} - 48y_{2n+2} - 44]$ is a Nasty number.
6.	$11[252x_{3n+3} - 48y_{3n+3} + 756x_{n+1} - 144y_{n+1} - 1129]$ is a cubical
number.	
7.	$252x_{2n+2} - 48y_{2n+2} - 528$ is perfect square.

Also, taking the negative sign in the R.H.S of (2), the corresponding integer solutions of (1) are given by

$$\begin{aligned} x_{n+1} &= \frac{1}{12} \left[13f_n + 4\sqrt{3}g_n + 22 \right] \\ y_{n+1} &= \frac{1}{12} \left[14f_n - 5\sqrt{3}g_n + 44 \right] \quad \text{n=0,1,2,3......} \end{aligned}$$

PROPERTIES:

1.	$1452x_{n+2} - 21780x_{n+1} + 5808y_{n+1} = -15972$
2.	$1452x_{n+3} - 303468x_{n+1} + 81312y_{n+1} = -255552$
3.	$1452y_{n+2} - 5805x_{n+1} + 1452y_{n+1} = 0$
4.	$1452y_{n+3} - 81312x_{n+1} + 21780y_{n+1} = -63888$

CONCLUSION

As the binary quadratic Diophantine equations are rich in variety, one may consider other choices of hyperbolas and search for their patterns of solutions and their corresponding properties.

ACKNOWLEDGEMENT

The finical support from the UGC, New Delhi F.MRP-5123/14(SERO/UGC) dated march 2014) for a part of this work is gratefully acknowledged

REFERENCES

- [1]. L.E.Dickson, History of Theory of Numbers, Vol.2, Chelsea Publishing Company, New York (1952).
- [2]. L.J.M Ordell, Diophantine equations, Academic Press, New York(1969).
- [3]. Gopalan M.A., Vidhyalakshmi.s and Devibala.S, "On the Diophantine equation $3x^2 + xy = 14$ ", Acta Ciencia Indica, Vol.XXXIIIM, No.2, Pg.645-646,2007
- [4]. Gopalan.M.A, Janaki.G, "Observations on $y^2 = 3x^2 + 1$ ", Acta Ciencia Indica, Vol.IXXXIVM, No.2, Pg.693,2008
- [5]. Gopalan.M.A, Vijalakshmi.R. "Special pythagorean triangles generated through the integral solutions of the equation $y^2 = (K^2 + 1)x^2 + 1$ ", Antarctica J.Math,7(5), Pg.503-507, 2010
- [6]. Gopalan.M.A., and Sivagami.B, "Observations on the integral solutions of $y^2 = 7x^2 + 1$ Antarctica J.Math,7(3), Pg.291-296, 2010
- [7]. Gopalan.M.A, Vijalakshmi.R. "observation on the integral solutions of $y^2 = 5x^2 + 1$ ", Impact J.Sci.Tech, Vol.4,No.4,125-129,2010
- [8]. Gopalan.M.A. and Sangeetha.G,"A remarkable observation on $y^2 = 10x^2 + 1$ " Impact J.Sci.Tech, Vol.4,No.1,103-106,2010
- [9]. Gopala.M.A., Parvathy.G, "Integral points on the hyperbola $x^2 + 4xy + y^2 2x 10y + 24 = 0$ ", Antarctica J.Math,7(2), Pg.149-155, 2010
- [10]. Gopalan M.A. Palanikumar.R, "Observations on $y^2 = 12x^2 + 1$ Antarctica J.Math,8(2), Pg.149-152, 2011
- [11]. Gopalan.M.A. Devibala.S, Vijayalakshmi.R, "Integral points on the hyperbola $2x^2 3y^2 = 5$ " American journal of Applied Mathematics and Mathematical Sciences, Vol.1, No.1,pg1-4,Jan-June,2012
- [12]. Gopalan.M.A.,Vidhyaloakshmi.S, Mallika.S,T.R.Usha Rani, "Observations on $y^2 = 12x^2 3$ ",Bessel J.Math2(3),Pg.153-158, 2012
- [13]. Gopalan.M.A.,Vidhyalakshmi.S G.Sumathi,K.Lakshmi,"Integral points on the hyperbola $x^2 + 6xy + y^2 + 40x + 8y + 40 = 0$ ", Bessel J.Math2(3),Pg.159-164, 2012
- [14]. Gopalan.M.A, Geetha.K, "Observation on the hyperbola $y^2 = 18x^2 + 1$ ", Retell, Vol.13,No.1,Pg.81-83, Nov.2012
- [15]. Gopalan.M.A Sangeetha.G, Manju Somanath, "Integral points on the hyperbola $(a+2)x^2 - ay^2 = 4a(k-1) + 2k^{2n}$, Indian journal of science, Vol.1, No.2, Pg.125-126,Dec.2012

- [16]. Gopalan.M.A., Vidhyalakshmi.S, Kavitha.A,"Observations on the hyperbola $ax^2 (a + 1)y^2 = 3a 1$ ", discovery, Vol.4, No.10,Pg.22-24,April-2013.
- [17]. Meena.K, Vidhyalakshmi.S, N.Sujitha, Gopalan.M.A, "On the binary quadratic Diophantine equation $x^2 - 6xy + y^2 + 8x = 0$, Bulletin of Mathematics and Statistics Research" Vol.2,Issue.1,14-20,2014
- [18]. Meena.K, Vidhyalakshmi.S, Gopalan.M.A, Nancy.T, "Integer points on the hyperbola $x^2 5xy + y^2 + 5x = 0$,Bulletin of Mathematics and Statistics Research" Vol.2,Issue.1, 38-41,2014
- [19]. Meena.K, Vidhyalakshmi.S, Gopalan.M.A, Nivetha.S, "Lattice points on the hyperbola $x^2 3xy + y^2 + 12x = 0$,Bessel.J.Math.,4(2)(2014),49-55
- [20]. Meena.K, Vidhyalakshmi.S, Aarthy Thangam.S, Premalatha.E Gopalan.M.A, "Integer points on the hyperbola $x^2 6xy + y^2 + 4x = 0$,SJET" Vol.2,Issue.1, 14-18,2014
- [21]. Meena.K, Vidhyalakshmi.S, Gopalan.M.A, Akila.G "Integer points on the hyperbola $x^2 10xy + y^2 + 8x = 0$, Bulletin of Mathematics and Statistics Research" Vol.2,Issue.2,215-219,2014