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ABSTRACT 

The criterion of error of misclassification of Bayes and Distance linear 

classifiers have not been fully investigated under the influence of 

intra class correlations in classifying two Multivariate Normal 

populations [c.f p 527 Johnson and Wrichen (2001)]. Here an attempt 

is made to study the relative performance of Bayes and Distance 

classifiers in classifying a new observation Xo into one of the two 

Multivariate Normal populations  11,pN  and  22 ,pN in the 

above said context.  

 ©KY PUBLICATIONS 

 
1.  INTRODUCTION TO LINEAR CLASSIFIERS 

 As it is proposed to study the relative performance of Bayes and Distance classifiers in case 

of two Multivariate Normal populations, the decision rules are presented here for ready reference: 

a) When the parameters are specified 

i) Bayes Rule    

  When 1 = 2 =  the Bayes Rule which is originally quadratic reduces to linear and is given 

by   
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II) DISTANCE CLASSIFIER 

The decision rule is  
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This decision rule has the geometrical interpretation of comparing the distances from X to 

1  and 2  according to a Threshold. When  1P =  2P =0.5, the decision boundary is the 

perpendicular bisector of the line joining 1  and 2 . 

b) When the parameters are unknown 

 When the parameters are unknown, then they are estimated based upon two samples of 

sizes 1n  and 2n respectively from 1  and 2 , before the classification is done. The estimates 

are given by  

 

ii X̂  and  pooledSˆ  
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Now, the methods described above can be used by replacing 1 , 2 ,  respectively by 

21, XX  and pooledS . 

2.  Computation of Total Probability of Misclassification (TPM) 

  Computing probability of error of misclassification is somewhat difficult as it involves 

evaluation of multiple integrals [c.f Fukunaga (1990)]. However TPM can be estimated by means of 

the confusion matrix using simulation and the process is as under: 

Total Probability of Misclassification (TPM) is defined as, 

TPM = P(misclassifying a 1  observation or misclassifying a 2 observation)                                                      

Therefore the confusion matrix is of the form 

 Predicted 

1  2  

Actual 
1  Cn1  CM nnn 111     

2  CM nnn 212     Cn2  

         Cn1  = Number of 1  items correctly classified as 1  items 

 Cn2 = Number of 2  items correctly classified as 2  items 

 Mn1 = Number of 1 items misclassified as 2  items 

 Mn2 = Number of 2 items misclassified as 1 items 

 

3. METHODOLOGY 

 Let ),( 1 pN  and ),( 2 pN be the two normal populations to be discriminated for the 

specified parameters using above said methods. Without loss of generality 1  is taken as Null 

vector, 2  is taken as  Tk  1   (where  T 1   is a vector with all components as unity), k varying 

from 0.5(0.5) 3.  
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Exploiting the relationship 2121  VV  , (where V and   are respectively the diagonal 

matrix of variances and intra class correlations), here it is considered   and the dimensionality 

(p) ranging from 3(1)10 and the correlations in the correlation matrix ranging from 0.2 to 0.8 

spreading with equidistant along the rows are taken in ascending fashion and in another case it is 

taken in the descending order. The priori probabilities 11)( pp   and 122 1)( ppp  . Here 

we have taken 9.0)1.0(1.01 p . 

4.  GENERATION OF MULTIVARIATE NORMAL DATA 

 The vectors of multivariate normal data with the specified parameters can be obtained 

starting from univariate standard normal data using Box and Muller (1958) technique and from this, 

we can generate multivariate normal data for any specified set of parameters  , [c.f Fukunaga 

(1990)]. 

 When the parameters are not specified then the simulation study involves two phases - 

Training (estimation) and Validation (classification). In training phase, based on samples of size 1n  

and 2n  drawn respectively from the specified populations, estimation of parameters is done, then 

the classifiers are constructed, while in validation phase another set of pseudo random vectors are 

drawn from Multivariate Normal and is used to study the performance of classifiers under 

consideration. 

5.  SALIENT OBSERVATIONS ON THE SIMULATION RESULTS 

The tolerance limit for TPM is taken as 10% and the following observations were made: 

PARAMETERS ARE SPECIFIED 

I. Decreasing pattern of correlations in  matrix. 

1. Distance classifier performs better than Bayes classifier under orthogonal transformation. 

II. Increasing pattern of correlations in  matrix 

2. Distance classifier under orthogonal transformation is the only classifier satisfying the 

tolerance limit condition. 

PARAMETERS ARE NOT SPECIFIED 

I. Decreasing pattern of correlations in  matrix. 

3. Bayes classifier performs better than Distance classifier under given vector. 

4. Under Orthogonal transformation, Distance classifier performs better than Bayes classifier 

even when the priori probabilities )( 1p  are increasing. 

5. Under Jackknifing Bayes classifier performs better with the gradual increase in )( 1p . 

II. Increasing pattern of correlations in  matrix. 

6.  Under Jackknifing Bayes classifier is performing better when compared to the Distance 

classifier. 

7. In general given vector under any classifier is performing better when compared to 

Orthogonal transformation and Jackknifing, However Jackknifing under Bayes classifier is 

equally good when compared to Bayes classifier under given vector with the increase in priori 

probability )( 1p . 

Performance of jackknifing very much depends on size of the samples and priori 
probabilities. It is observed that Jackknifing gives better results with the increase in sample sizes and 

priori probabilities )( 1p . 
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ANNEXURE 
100*TPM OF BAYES AND DISTANCE CLASSIFIERS IN CLASSIFYING TWO POPULATIONS 

),0(:1 pN  and ),(: 22  pN  

TABLE NO: 1.1: DECREASING ORDER OF CORRELATIONS IN  MATRIXWHEN THE PARAMETERS ARE SPECIFIED 

),0(: 101 N                   ),(: 2102  N  

)( 1p  
2  (3.0)1

T
 (2.5)1

T
 (2.0)1

T
 (1.5)1

T
 (1)1

T
 (0.5)1

T
 

Classifier             

0.1 Bayes 
Distance 

2.8 
5.8 

0.0 
0.0 

6.2 
10.1 

0.2 
0.0 

10.8 
13.7 

4.1 
0.3 

21.5 
19.8 

17.0 
1.5 

36.3 
27.9 

41.0 
8.4 

50.0 
40.3 

50.0 
36.1 

0.2 Bayes 
Distance 

3.0 
8.4 

0.0 
0.0 

5.1 
9.2 

3.0 
0.0 

7.2 
11.5 

1.2 
0.0 

16.8 
18.6 

7.8 
0.9 

29.1 
28.7 

27.3 
6.7 

46.8 
38.8 

49.5 
29.3 

0.3 Bayes 
Distance 

2.9 
6.8 

0.1 
0.0 

5.9 
11.5 

0.2 
0.0 

9.7 
15.2 

1.0 
0.1 

17.5 
20.5 

5.1 
0.9 

26.9 
30.5 

19.3 
8.0 

39.3 
36.7 

44.1 
24.3 

0.4 Bayes 
Distance 

3.1 
7.9 

0.0 
0.0 

5.7 
11.2 

0.1 
0.0 

9.6 
13.5 

0.7 
0.1 

15.2 
20.8 

3.6 
0.9 

26.5 
29.7 

12.5 
5.4 

37.9 
37.6 

32.1 
22.5 

0.5 Bayes 
Distance 

4.1 
7.9 

0.0 
0.0 

6.2 
11.9 

0.0 
0.0 

10.1 
13.4 

0.6 
0.2 

16.4 
22.2 

2.4 
1.3 

25.3 
30.1 

9.5 
5.3 

36.9 
39.7 

26.4 
21.7 

0.6 Bayes 
Distance 

4.2 
7.7 

0.0 
0.0 

7.1 
11.2 

0.1 
0.0 

10.2 
15.5 

0.4 
0.0 

17.9 
21.4 

2.9 
0.9 

26.7 
30.6 

11.1 
5.3 

41.3 
40.0 

32.1 
23.3 

0.7 Bayes  
Distance 

3.6 
7.4 

0.0 
0.0 

6.1 
9.6 

0.1 
0.0 

12.3 
14.6 

0.5 
0.0 

20.5 
21.6 

5.2 
1.3 

27.6 
29.8 

17.4 
5.8 

43.9 
41.5 

43.5 
25.3 

0.8 Bayes 
Distance 

4.7 
7.1 

0.0 
0.0 

9.6 
11.8 

0.3 
0.0 

14.2 
15.1 

1.1 
0.1 

24.4 
25.2 

6.6 
1.1 

33.8 
29.5 

26.1 
6.3 

47.3 
40.9 

49.5 
28.8 

0.9 Bayes 
Distance 

6.4 
8.8 

0.0 
0.0 

12.2 
12.4 

0.4 
0.0 

19.9 
16.6 

3.9 
0.0 

28.5 
22.5 

17.1 
1.3 

40.9 
34.5 

40.9 
10.0 

49.9 
41.9 

49.9 
38.0 

)( 1p : Priori Probability of 1   For a Given Vector  Using Orthogonal Transformation 

TABLE   1.2: INCREASING ORDER OF CORRELATIONS IN  MATRIX WHEN THE PARAMETERS ARE SPECIFIED 

),0(: 101 N          ),(: 2102  N  

)( 1p  
2  (3.0)1

T
 (2.5)1

T
 (2.0)1

T
 (1.5)1

T
 (1.0)1

T
 (0.5)1

T
 

Classifier             

0.1 Bayes 
Distance 

16.6 
6.7 

20.1 
0.0 

23.4 
11.1 

25.0 
0.0 

28.7 
13.9 

32.4 
0.4 

39.8 
23.6 

40.4 
1.2 

46.6 
30.3 

48.1 
8.4 

50.0 
41.4 

50.0 
37.7 

0.2 Bayes 
Distance 

18.9 
6.7 

23.4 
0.0 

21.1 
9.9 

28.1 
0.0 

27.0 
16.8 

32.5 
0.4 

36.5 
24.6 

35.4 
0.8 

41.3 
30.5 

44.3 
8.1 

50.0 
41.0 

50.0 
27.4 

0.3 Bayes 
Distance 

15.1 
8.0 

25.0 
0.0 

19.4 
9.6 

29.6 
0.0 

25.5 
15.2 

29.5 
0.2 

31.4 
22.7 

34.5 
0.6 

41.4 
32.7 

38.1 
7.4 

47.3 
39.6 

49.3 
24.6 

0.4 Bayes 
Distance 

17.9 
6.9 

26.2 
0.0 

20.3 
10.5 

29.5 
0.0 

26.1 
17.2 

30.3 
0.2 

32.2 
23.8 

34.4 
1.5 

37.2 
31.6 

39.3 
7.6 

46.8 
42.1 

46.3 
23.3 

0.5 Bayes 
Distance 

16.4 
6.8 

33.1 
0.0 

21.6 
10.5 

34.0 
0.0 

25.2 
14.2 

33.4 
0.1 

31.0 
19.9 

36.8 
1.0 

36.3 
29.6 

43.0 
8.3 

44.1 
40.4 

46.1 
23.6 

0.6 Bayes 
Distance 

19.7 
7.2 

32.5 
0.0 

22.6 
10.9 

33.8 
0.0 

26.5 
16.7 

35.3 
0.2 

31.5 
21.9 

38.8 
1.9 

37.1 
30.6 

40.2 
5.5 

45.8 
42.5 

47.2 
25.0 

0.7 Bayes 
Distance 

16.9 
6.6 

35.8 
0.0 

25.3 
11.7 

35.8 
0.0 

30.9 
17.5 

39.3 
0.4 

34.0 
24.6 

41.7 
1.4 

41.4 
30.5 

44.3 
8.2 

47.3 
39.4 

49.4 
25.1 

0.8 Bayes 
Distance 

19.5 
6.9 

39.6 
0.0 

27.7 
14.7 

40.1 
0.1 

29.3 
15.0 

43.3 
0.6 

37.2 
25.8 

45.0 
2.0 

45.1 
31.5 

46.8 
9.0 

49.7 
42.2 

50.0 
29.2 

0.9 Bayes 
Distance 

23.8 
8.3 

42.7 
0.0 

27.2 
10.6 

44.6 
0.0 

34.8 
15.4 

46.7 
0.1 

41.6 
25.4 

48.1 
2.4 

47.8 
30.9 

49.7 
14.4 

50.1 
40.4 

50.0 
40.9 

)( 1p : Priori Probability of 1   For a Given Vector  Using Orthogonal Transformation 
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TABLE  1.3: DECEASING ORDER OF CORRELATIONS IN  MATRIX 

WHEN THE PARAMETERS ARE NOT SPECIFIED 

),0(: 101 N ; ),(: 2102  N  Size of First Sample: 10 ; Size of Second Sample: 20 

B: Bayes Classifier D: Distance Classifier 

)( 1p : Priori Probability of 1   For a Given Vector  Using Orthogonal Transformation  Jackknife Method 

TABLE 1.4: INCEASING ORDER OF CORRELATIONS IN  MATRIX 

WHEN THE PARAMETERS ARE NOT SPECIFIED 

   
),0(: 101 N ; ),(: 2102  N   Size of First Sample: 10 ; Size of Second Sample: 20 

)( 1p

 
2  (3.0)1

T
 (2.5)1

T
 (2.0)1

T
 (1.5)1

T
 (1.0)1

T
 (0.5)1

T
 

                   

0.1 B 

D 

0.0 

0.7 

31.7 

0.2 

50.0 

10.7 

0.0 

3.0 

18.7 

0.0 

50.0 

14.5 

0.2 

6.2 

24.5 

2.0 

49.7 

20.2 

0.5 

15.5 

28.7 

4.0 

50.0 

29.2 

5.7 

25.0 

29.2 

11.7 

49.2 

38.5 

29.0 

36.0 

35.5 

35.7 

48.2 

47.0 

0.2 B 

D 

0.0 

1.5 

19.7 

0.2 

48.5 

9.0 

0.0 

2.7 

21.7 

1.7 

48.0 

12.5 

0.0 

5.5 

25.0 

2.2 

45.7 

18.5 

0.5 

11.5 

28.7 

7.0 

44.0 

22.5 

7.0 

19.2 

31.0 

17.7 

40.5 

30.5 

26.5 

46.0 

42.2 

37.5 

45.0 

46.0 

0.3 B 

D 

0.0 

1.0 

27.5 

0.2 

34.2 

7.5 

0.0 

1.7 

19.0 

0.7 

31.7 

13.2 

0.2 

6.0 

20.7 

3.5 

35.2 

16.2 

1.0 

10.7 

29.2 

5.7 

31.2 

20.5 

7.2 

23.0 

31.2 

11.7 

33.7 

25.2 

22.2 

37.5 

42.0 

25.2 

35.5 

40.5 

0.4 B 

D 

0.0 

1.2 

28.5 

1.2 

16.0 

8.5 

0.0 

0.5 

26.7 

1.2 

15.7 

8.5 

0.2 

4.2 

25.5 

2.0 

16.5 

12.5 

1.0 

17.5 

25.7 

8.2 

23.5 

22.2 

6.0 

18.5 

38.2 

11.2 

21.0 

24.7 

20.5 

35.5 

37.7 

28.5 

30.7 

34.2 

0.5 B 

D 

0.0 

0.7 

34.5 

0.5 

2.5 

9.5 

0.5 

2.7 

33.7 

2.2 

3.0 

11.2 

0.2 

3.7 

28.5 

6.2 

6.0 

13.0 

1.7 

15.7 

28.5 

4.5 

10.2 

20.0 

6.2 

19.7 

34.5 

13.0 

13.5 

24.0 

24.5 

37.2 

44.0 

26.5 

26.0 

35.0 

0.6 B 

D 

0.0 

0.5 

27.0 

0.0 

0.0 

8.0 

0.0 

3.0 

27.2 

2.0 

1.5 

9.0 

0.0 

5.7 

27.0 

4.7 

1.7 

11.5 

0.2 

12.7 

26.2 

5.0 

3.5 

14.5 

3.7 

19.2 

28.2 

11.7 

6.2 

23.0 

19.5 

33.0 

35.2 

27.7 

19.0 

33.0 

0.7 B 

D 

0.0 

0.2 

26.2 

0.5 

0.0 

7.7 

0.0 

2.7 

30.2 

1.0 

0.0 

7.5 

0.2 

4.2 

28.5 

2.7 

0.2 

12.0 

1.0 

9.7 

30.0 

7.2 

2.0 

11.7 

5.2 

21.5 

32.7 

15.7 

5.2 

21.7 

21.0 

38.2 

41.0 

29.7 

22.5 

35.7 

0.8 B 

D 

0.0 

0.5 

35.2 

2.0 

0.0 

6.0 

0.0 

2.5 

31.2 

0.7 

0.0 

9.5 

0.2 

4.2 

32.0 

7.0 

1.2 

9.2 

0.2 

11.5 

33.2 

8.5 

3.0 

11.0 

6.5 

25.0 

29.2 

18.5 

15.0 

23.5 

20.2 

34.0 

41.0 

38.7 

29.5 

37.2 

0.9 B 

D 

0.0 

1.2 

32.0 

0.5 

8.5 

6.2 

0.0 

2.5 

38.7 

3.0 

8.0 

4.5 

0.0 

4.0 

29.7 

4.0 

15.0 

6.5 

0.7 

9.7 

37.2 

16.2 

21.0 

11.7 

8.5 

24.5 

36.2 

22.2 

30.5 

25.2 

27.2 

37.2 

40.0 

41.7 

40.2 

45.7 

B: Bayes Classifier; D: Distance Classifier 

)( 1p : Priori Probability of 1   For a Given Vector  Using Orthogonal Transformation  Jackknife Method 

)( 1p

 

2
 

(3.0)1T (2.5)1T (2.0)1T (1.5)1T (1.0)1T (0.5)1T 

                   

0.1 B  

D  

0 

0 

49 

0.5 

50 

12.5 

0 

0.2 

47.5 

0.5 

50 

13.7 

0.5 

4.2 

44 

0.7 

49.7 

21.5 

0.7 

9 

46.7 

5.5 

49.2 

29 

8.7 

21.5 

42.2 

14.7 

49 

42.2 

30.7 

36 

45 

37.7 

48.5 

48.5 

0.2 B  

D  

0 

1 

49.2 

1 

48.2 

8.2 

0 

1.2 

46.5 

0.5 

47.7 

11.5 

0 

3.7 

46.7 

3.2 

46 

16.5 

0.2 

8.5 

44.2 

4.2 

45.2 

23.7 

7.5 

19 

50.7 

15 

44.2 

34.5 

24.2 

33 

51.7 

38 

45.5 

46.5 

0.3 B  

D  

0 

0 

48.5 

0.2 

30 

6.2 

0 

1.2 

46 

1.2 

34 

11.2 

0 

4.7 

42.7 

0.7 

34.5 

15 

1.2 

10.7 

43.2 

6.5 

34.5 

22 

6 

19.5 

41.7 

10.7 

33 

29 

23.5 

34 

45.5 

31.5 

41 

40.5 

0.4 B  

D  

0 

0 

48.2 

0.5 

14.2 

6.2 

0 

0.7 

47.7 

0.2 

14 

8.7 

0 

3.2 

47.5 

1.7 

17.5 

11.2 

1 

8.2 

44.2 

6.2 

18.5 

17.2 

7.7 

16.7 

44.5 

15 

24 

24.7 

26.7 

34.5 

46 

28.5 

33.5 

35.7 

0.5 B  

D  

0 

0.2 

47.5 

0 

3.2 

6.7 

0 

0 

47.7 

1.5 

4 

6.5 

0 

3 

45.5 

3 

6.5 

9.7 

2.2 

9.5 

44.5 

7.2 

7.7 

13.2 

5 

15.7 

41.5 

13.7 

14.2 

20.7 

22 

28 

47.7 

33.2 

25.5 

32.5 

0.6 B  

D  

0 

0.2 

48.2 

0.2 

0.2 

5.5 

0 

0.7 

47.2 

1.2 

0.7 

6.7 

0 

3.7 

47 

1.7 

0.7 

9.2 

1.2 

7.5 

45.2 

8 

3.5 

14.7 

5.2 

16.7 

47 

14.5 

9.5 

18 

21.5 

26.5 

45.2 

30 

21.7 

30.2 

0.7 B  

D  

0 

0.2 

49 

0.7 

0 

2.7 

0 

0.7 

48 

2.5 

0 

6 

0 

3 

47 

3.5 

0 

8.7 

0.7 

5.7 

47 

5.7 

1.5 

12 

4.5 

18.5 

43.2 

19 

4 

18 

27.7 

33.5 

48.5 

36.5 

29.5 

35.7 

0.8 B  

D  

0 

0.2 

48.7 

0.7 

0 

4.7 

0 

0.2 

47.5 

3 

0.5 

5.5 

0 

2.7 

46 

3.6 

1.5 

5.7 

1.2 

7.2 

44.5 

8.5 

3.5 

8.5 

6.7 

16.2 

47.7 

26 

10.7 

16.2 

21.2 

31 

46.2 

35.5 

31.5 

36.7 

0.9 B  

D 

0 

0.2 

49.7 

1 

9.5 

3.5 

0 

1.2 

48.2 

1 

11 

4.7 

0 

2 

47 

4.7 

17 

5.5 

1 

9 

47 

8.2 

18.5 

7.7 

7.7 

17.5 

45.2 

23 

30.2 

18.5 

31.5 

37.5 

49.2 

42.5 

42.2 

46 
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Note:   The typical tables of TPM values are included here to save the space, and the 

exhaustive  tables are available with the authors. 
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