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ABSTRACT

In this article, we study some sufficient conditions for the controllability
results of nonlocal quasilinear mixed integro-differential impulsive systems
with Sobolev type in Banach space. The results are obtained by using
Schaefer’s fixed point theorem.
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INTRODUCTION

A large class of scientific and engineering problems is modelled by partial differential equations,
integral equations or coupled ordinary and partial differential equations which can be described as differential
equations in infinite dimensional spaces using semigroups. In general functional differential equations or
evolution equations serve as an abstract formulation of many partial integrodifferential equations which arise
in problems connected with heat-flow of materials with memory and many other physical phenomena. Neutral
differential equations arise in many areas of applied mathematics and for this reason these equations received
much attention during the last few decades [kban1, kban2, H5].

The notion of a measure of weak compactness was introduced by De Blasi [DB] and was subsequently
used in numerous branches of functional analysis and the theory of differential and integral equations. Several
authors have studied the measures of noncompactness in Banach spaces [ban2, ban1, ABA, BE]. Motivated by
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[DL, BG], in this paper, we study the existence results for quasilinear equation represented by first-order
neutral integrodifferential equations using the semigroup theory and the measure of noncompactness.
Controllability of linear and nonlinear systems represented by ordinary differential equations in finite-
dimensional spaces has been extensively investigated. The problem of controllability of linear systems
represented by differential equations in Banach spaces has been extensively studied by several authors [c2].
Several papers have appeared on finite dimensional controllability of linear systems [K1] and infinite
dimensional systems in abstract spaces [cl]. Of late the controllability of nonlinear systems in finite-
dimensional spaces is studied by means of fixed point principles [B1]. Several authors have extended the
concept of controllability to infinite-dimensional spaces by applying semigroup theory [p1, y1]. Controllability
of nonlinear systems with different types of nonlinearity has been studied by many authors with the help of
fixed point principles [B2]. Naito [Na3] discussed the controllability of nonlinear Volterra integrodifferential
systems.

PRELIMINARIES

Consider the class of Sobolev-type quasilinear neutral functional integrodifferential system with nonlocal
conditions of the form

%[EX(I)—g(t,X(t))FA(I,X(t))X(t)+Bu(t)+ (1)

F(t,x(0), [ k(t,5, x())ds, (e, s, x(s))ds) 1€ [0.6]

x(0)+q(x) =, o)

Where the state variable x(-)takes values in a separable banch space X with norm ||~||and the control

function u () is givenin L (1,U) . A banach space of admissible control functions with U

As a banach space the interval [ = [O,b]. Eand Bis a bounded linear operator from U into U and
A: [O,b]XX - Xis a continous function in banach space U .the function
g IXC o X, f:IXCXXXX > X,k:IXIXC—> X, h:IXIXC—>X,q:C(I,X)— X are
given functions .The norm of U is denoted by ""

Definition 2.1: A family of operators {U(t, §):0<s<r< b}C L(X)is called a evolution family of operators
for(3) if the following properties hold:

() UGHU (. T)=U 1, T)andU (t,1)X = X, ¢ overy sST <t &allxe X

(b)for each X€ X the function for (t,s) > U(t,s)x is continuous and U(¢,s)e L(X)
forevery t > and

() for O0<s<t<b,he function t—U(t,s),for (s,t]e L(X),is differentiable  with
%U(Z, s)=AU(t,s)

Definition 2.2:[22]system(1)-(2)is said to be controllable on the interval J ,if for every intial functions

xeX xeX
a

nd sthere exit a control ue LZ(J,U) such that the solution x(-)of (1)-(2)
satisfies x(0) = x, and x(b) = x,

Definition 2.3: A solution x(-)e C([O,b], X )is said to be mild solution of (1)-(2), then the following integral
equation satisfied

x(t)= E7'U(1,0)[Ex, — Eq(x)— g(0,x,)]+ E"'g(t,x,)

tel
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We need the following fixed point theorem due to Schaefer [22]

Theorem: Let E be a normed linear space .Let F': E — E be a completely continuous operator ,that is it is
continuous and the image of any bounded set is contained in a compact set and let

G(F)={xe E:x= AFxforsome0< A <1}

Then either §(F') is unbounded or F' has a fixed point

To study the controllability problem ,We assume the following hypotheses:

A1)

(H1) generates a strongly continuous semigroup of a family of evolution operators U (t, 5) and

there exist constants Ml >0
||U(t,s)|| <M, forO<s<t<b

such that

(H2)  There exits a positive constant O<by<band for each 0<t<b, there is compact set

V, € X suchthat
Ut,s)f (s,x,, J:k(s,T,xT )T, jo h(s,T,x,)dT),U (t,5)A(s, x(5))g(s, x,),U (t,s)Bu(s)e V. &all
0<t<s<b,
(H3) The linear operator W : I’ (I,U) — X defined by

W, = [U®.5)Cu(s)ds
Has an inverse operator W 'which takes values in L*(I,U)/kerW and there exists a positive
constant M, such that “CW“H <M,

g IxX 5 X

(H4) (i) the function is continuous for a.ef € 1 and there exists a positive constant

M, >O,Lg > O such that

g(t.s)|<M x|
| ;
And
le@.x) <L,
(ii)also there exists a constant MA > ( such that

A x@)g )| <M, x|

Holds for 1€ 1
(H5) (i) for each € 1 , the function k(#,s,") : C — X is continuous and ,for each ¥ € C the function
k(,,x):1—>X

is strongly measurable

M, :1—]0,0)

(ii) there exists an integrable function such that

Ik, s, 0| < M, (.9, ()
Holds for te [ ,x€ C Where Q| :: [0,00) - [O,w).is continuous non decreasing function

(H6) (i) foreach T€ I the function hit,s,):C— X
W) — X

is continuous and ,for each ¥ € C ,

The function is strongly measurable

(ii) there exists an integrable function M, : [ — [0,00)such that

|2, 5,0 < M, (2, 5)€, (|A)
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Holds for t€ I ,xe C Where Q, :: [0,00) - [O,w).is continuous non decreasing function

fiIXCxXxX -5 X

(H7) the function satisfies the caratheodary conditions

(i) for each !€1 sthe function  f(¢,.,.,) : CX XXX — Xis continuous and ,for

(x,y,7)€ CX X XX The function fGxy =X is strongly measurable
(i) there exists an integrable function M , : I — [0, o0 )such that
| @.x. v, 2)| < M Q] + 5]+l
Holdsfor e I ,x€ Candy,z€ X Where Q,: [0,00) - [O,w).is continuous non de

creasing function

M >0
(H8) the function g :C(I,X) — X is continous and there exists a constant a such that
||q(x)|| <M, forxe X
(H9) The following inequality holds , the function

—~ _ ) a 0
m(t) = max{LM,|E M , (1), M (t,5),M,,(2,5), jong (t,)ds, oM, (4,5)ds)

Satisfies
b o ds
J-o m(s)ds < L §+2Q,(5)+2Q,(s)+Q,(s)
Where
d =[E" o1 [|[Ego)] +EM |+ L, ]
And

dy = M,|E7 (x| +|E7 M, + M L1+ M |E7 M ,br
+M,|E™ Hj;M L(9)Q,[r + J:Mk (5, T)Q(T)dT + jO“Mk (5,0)Q, (T)dT 1ds}

CONTROLLABILITY RESULT

Theorem 3.1 If the hypotheses [H1] - [H9] are satisfiedd, then the system (1) - (2) is controllable on 1
Proof. Using the hypothese [H3] for an arbitrary function define the control

u(®) =W"'[x, - E"Ub0)[Ex, — Eq(x)— g(0,x,)]— E"' g(b, x,)
. . 3)
- j(f E™'U (b, 5)A(s, x(5)g(5,x, )ds— j;’ EUb,5)f (5,3, [ k(s. T, )T, [ (s, T, x,)dT)ds) @)

If x(t) = y(t) + (1), € [0,b], it s easy to see that y satisfied
() = E"U(b.0)[Ex, — Eq(x)]+ E"'g(t.y, +)
~E'U0)g(0.6,) + [ E'U(1,5)A(s,x(5)g(s, y, +,)ds
+ [ ETU@mCW Ly, - E'U (b0)[ Ex, — Eq(x)~ (0,61~ E”'g(b,, +,)
[ EUG.AG, K805, +0)ds= [ E UG f(s,3,+8, [ k7,3, + 05, [ 15,7, y,+ g )do)dsl ey

[ E'U@S)f(5,3,+0,. [ k(s,7,y,+6.)d7, [ h(s,7,y, +9,)dv)ds, e I

If and only if X satisfies
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x(t) = E"'U (t,0)[ Ex, — Eq(x)]+ E'g(t,x,)

—E"U(1,0)8(0,x,)+ jo E7'U(t,5)A(s,x(5))g(s, x,)ds

+ jo E"U(t,m)CW ™' [x, — E"U (b,0) Ex, — Eq(x) — g(0,x,)]- E"'g(b. x,)
~ [ UG 9)AG x50 (s x)ds = [ EU (b, f (5,5, [ k(s 7,5,)d7, [ hs,7,x, )dr)ds g
+[ B0 ) f(5.x,, [ k(s,7,x0d7, [ hs,7,x,)de)ds 1 1
Define C; ={ye€ C, : y, =0} and we now show that when using the control , the operator
F:C, _>C'?, defined by
(Fy)0) = E"U GO Ex, — Eq()1+ E™'g(1,, +4))

~E'U(10)8(0,6,) + [ E'U (1, )A(s, x(5))g (s, , +9,)ds

+[ E"UGmCW " x, — E"U(b0) Ex, — Eg(0) - 8(0.0,)1- E " g(b, ¥, +9,)

[ EMU(b.9)AG. x(5)8 (5. y, +6,)ds

[ EUG) 53,40 [ K.y, 400, [ 5.7, 5, +§)dT)ds |y

! —~ N ~ a —
+[ EUf (53, +0,, [ k(5,7 3, +0)dT, [ h(s,7, 3, +8,)dT)ds,t€ Thas 2 fixed
point. This fixed point point is then a solution of equation (5):

Clearly x(b)= x, which means that the control U steers the system (1) - (2) from the intial function ¢ to x;
in time b, provided we can obtain a fixed point of the nonlinear operator F.

In order to study the controllability problem of (1) - (2)we introduce a parameter Ae (0’])
And consider the following system

%[Ex(t) —g(t,x)] = AA(t, x(0))x(t) + ABu(t) + A (1, x,, jo k(t, s, x,)ds, jo h(t,s,x)ds)  (s)

x(0)+¢q(x) = Ax, (6)
First we obtain a priori bounds for the mild solution of the equation (5) - (6). Then from

x(t) = AE"'U (t,0)[ Ex, — Eq(x)]+ AE ' g (t, x,)
= AE™U (10080, %) + A E'U (2,5)A(s, x(s))g (s, x,)ds
+1 jo EU@t,n)CW'[x,— E"U(b,0)[Ex, — Eq(x)— g(0,x,)]- E"'g(b,x,)
- [ EU®G,9) A, x(5)g (5, 5)ds = [ EUB,5) £ (5., [ K(s,7,2)de, [ hs, 7,5, )d0)ds )

+A[ EU8)f (5, [ k(s,7,x0d7, [ hs,7,x,)dT)ds te 1
We have
[x0)]| < E| U (t.0) Ex, — Eq(o)]| + |[E™ g 2, x)
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B0 @00, %)+ [ |EU @, 5)ACs, x(5) g (5, x,)|ds

+ [ U@ eW L~ E U GO Ex, - Eg(0)- g 0x,)1= E g b,

- J.SHE'U(b,s)A(s,x(s))g(s,xs ds = [ E'Ub,5) £ (s.x,. [ k(s,7.x,0d. [ h(s.7,x,)do)ds

l|@dn

+ J-O HE‘IU(t, s)f(s, xs,J:k(s,z', x,)dt, J-: h(s,7,x,)d7)|ds

<|[E” | 1) Ex, |+ M, + L1+ |E M x|+ M £

t
JOMA X, )ds
+ MM [ s |+ 0o | Exy |+ b e, + 21,0,
+M,|E"|M br

t b a
+ M, |E7|[ M (90Qu0r+ [ M, (5. 0Q (dT+ [ M, (5,0)Q, (r)dT)ds

< ”E"”Ml["ExO" +|E|M, +L,1+ ||El "Mgr +Ml||E‘1

I

M B[, 002, [+ [ M, 002 (sdr+ [, (5.0, (e s

xS

ds + M bd,

Let us take the right hand side of the above inequality as (¢) then we have
x(0) = p(0) = d & |x(1)|| < 44() with
M (1) =
M,|E"M,

|+ M, £, (s)93[||x|| + [ M@0, (s + [ M, 1,99, (||x||)ds}

<duit)+M, "E,l ”Mf (5)Q, [,u(t) + J':Mk (t,5), (u(s))ds + J':Mh (t,5)Q, (ﬂ(s))ds}
Where d1 = Ml"E_l”MA since 4 is obviously increasing,let
w(t) = p(0)+ [ M, (1,99 (u(s))ds + [ M, (1,59, (u(s))ds
then W(O) = 2(0) = Ly (1) < wi(t)

W(t) = /() + M (t,5)Q, () + M, (t,)Q, (u(t)) + _E%Mk (t,$)Q, (1(s))ds + J:%Mh(t,s)ﬂz(ﬂ(s))ds

<w(t)+MI|E-1M , ()Q,(w(1) + L’%Mk (t,$)Q, (u(s))ds + I:%Mh(t,s)ﬂz(ﬂ(s))ds

<mfw(t) + Q, (W) +2Q, (w(z)) + 29, (w(t))}
This implies
= ds
4 5+Q,(5)+2Q,(s)+2Q,(s)
w(t)<r H()Sr,te [O,b]

J~W(t) ds

< jbm(s)ds <
w0 s+ Qo (s)+2Q,(s) +2Q,(s) 0

This inequality that there is a priori bound 7’ > 0such that and hence
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Since ||x(t) <rte I||

||x||l = supﬂ|x(t)|| —p<t< b}< r
Where T depending only on ¥ and the functions M, ()M, (),M,(), Q,(.),2,(.),2,()

Next we must prove the operator Fis a completely continuous operator.let

B, ={ye |y <r}

, we have

for some 7 21
We first show that the set {F), :ye B, }is equi continuous .let YE B &t € [O’b],

Thenif0<t, <t, <bh,

I(Fy) @) = (Fy)@,)|
E o @0 -v @ ol Ex, - Egoll + |E s, v, + 60— 1,3, +,)

+|E U .0~ U@ 0fs )] | B0 69~ U)o, x5 3, +6,)ds

+[" EU @, 9)AG, x(s)g (s, v, +9,)ds

+[ U= U m]ew 1 — E7U (b,0) Ex, — Eg(x) = 2(0,6,)1- E ™' g (b, 3, +4,)

- KE‘IU(b,s)A(s,x(s))g(s,ys +9,)ds

[ EUG) (53,400 [ K.y, 400, [ 5.7, 5, +§)dn)ds |y

_l_

[ EUmCW L~ E'U GO Ex, ~ Eq(x) = g(0.6)1- E'g(b., +9,)

_ H j;’ E"U (b, 5)ACs, x(s)g (s, y. +.)ds

—H_[:E“U(b,s)f(s, Yo+, | kGt v+ 90 [ s, T,y + 4, )dr)ds](n)dn”

- H ["E U, 9)=U . 9)f (5,3, +9,. [ k(5,7 3, +0)d7, [ h(s,7,y, +6,)dT)ds

_l_

_[12 E’IU(tz,s)f(s, v, + és ,J:k(s,r, v, + @)dr,j: h(s,zT,y, +¢;r)d7)ds

<|E7|Ju .00~ U, 0)||[Ex, - Eq(0)]|

+E et v, +6,)- 20y, +6,)

+Elv @00 -U @,.0)]| 0.4,

HElva.e-va,. ol s s ).y, +6,)

ds+(t, —t)M,|[E”|M ./
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e v, o -vw, o emew ' x, - E'UGOLEx, - Eg(x) - 20,1 E" g (b, , +9,)|

_ HLb E™'U (b, $)A(s, x(s)g(s, y, + (/;S)ds

L E U@ G 46 Koty b [ sty + godmrds )

+(t, —t)|[E7 M M, Lx, + | E7 [ Ex, |+ E|M, + M 1+]

E'|m
+Mb|E M, + M B|E M ()0 +bM 7 +bM )]

+H [ B0 =U@1f (5,3, +0,. [ k(s,7,y, +9.)d7. [ h(s,7,y, +,)d)ds

+(t, —1, )“E"HMIM SO +bM 1 +bM 1)

(t,—t)—0

Where ' =r + “¢AH the right hand side is independent of y € B, and tends to zero as ,since

by assumption (H2)implies the continuity in the uniform operator topology

Thus the set {F}. :YE B, } is equi continuous.

Notice that we considered here only the case 0<t1 <t,; since the other cases 1, <t20 <or

t, <0< t,are very simple.

It is easy to see that the family FBk is uniformly bounded. Next we show that FBk is compact. Since we have

shown that FBk is an equi continuous collection, it suffices, by the Arzela-Ascoli theorem, to show that

F maps Bk into a pre compact setin X .

Let O<r<b be fixed and € a real number satisfying 0 < €<t :For y € B, ; we define

(F.)()= E7'U(b,0)[Ex, — Eq(x)]+ E"'g(t,y, +&,)
~E'U1008(0,6) + [ E"U @, 5)A(s, x(5))g (s, , +9,)ds
+ [ EMU@mCW lx — EU(b.0) Ex, — Eq(x) = 2(0,6)1-E "' 8(b,, +,)
~ [ E"U (A x(5)g (s, v, +,)ds
[ EU@f (3,46, [ Ksry, +6.0d7 [ by, + 6 )dD)ds

+[TE U [ (5,3, +0,. [ k5.7, 3, + 9.7 [ 5,7,y +6,)dT)ds
Now by assumption (H2), the set Y, (f) = {(ng)(t) 1yE Bk} is pre compactin X fore 0 <& <1

More over for every Y € B, we have

I(F)(@) = (F,y)®)] <
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t
J‘t—é‘

+[ |E'U@mew Ly, - ETUBOLEH0) - Eg(x) - (0.8,)1- E” (b, 3, +9,)|

E7U (1, $)As, x() 8 (s, y, +9,)|ds

_ EHE—IU(b,s)A(s,x(s))g(s, y, + (53) ds

—H IObE‘lU(b,S) F(s.3, 40, [ k(s y, + 0.7, [ h(s. 7.y, +6, )dr)ds](ﬂ)”dn

+| '_€HEIU(z,s) F5,3,+0,.[ k(s,7,y,+0,)d7, [ h(s, 7.y, +,)d7)|ds

Therefore,
[CFy)@) = (F,3)(@®)| =0

As € — 0 ,and there are pre compact setsarbitrarily close to the set {(Fy)(l‘) 1Y€ B, }

Hence the set {(Fy)(l‘) :ye B, }is pre compact setin X .
It remains to be shown that [ : C[? - C[? is continuous .let {yan’C Cf”withyn —> yinC,) . Then there is

an integer K such that ”yn (t)” <Kfor all "and telso y,€ B,and y€ B, .by (H4),(H7),

8, y”(t)+¢:) -8, y(t)+¢:)for each [€ Iand since
ey, () +6) = g(t,y,®)+ )| < 2M ', At, (1)) g (1, (1) + §,) — At x(1) g2, y(t) + ) fo
reach [ € Iand since

A X003, 0+ 8) ~ Al X000+ 0| S2M, 8 1,3, (0+ 6. [ K.y, () + Qs [ .y, () +)d)

- ft,y@)+ ¢;t ,J‘Otk(t, s,y(s) + ¢1, )ds, J: h(t,s,y(s)+ q;s )ds) for each t € I and since

03,0+ 8 [k, 60+ s, [ 5,9 +6.)d5)= £ 30+, [K0.506)+8)ds. [ 0. 5(5)+8)d9
<2u,(6),r =r+|g|
[(Fy,0@ ~ E)|
E7[8(t,y,(0+8) =gt y(1)+9,)]

,we have, by dominated convergence theorem,
sup

= tel ‘

+ H LtE U ) A(s, x()g (s, 3, (5) +,) — A(s, X(5)) g (s, y(5) + @,)1ds

+[ ETU@mCW =E ' [g(b,y, (0) +6,) g (b, y(B) +9,)]

— [} EU (b, 9)[AGs. x(5))g (5. 3, (5) +,) = Als, x(5)8 (5. y(5) + §,)lds
—[EU G (53,040, k(s,7.3,(@)+0.0d7. [ h(s.7., (D) +6,)d7)
~ (5, 3(9)+ 0, [ k5.2, 3(2)+ 6,07, [ h(s,7, 3(2) + §,)dD)ds |

+[EU@f(5,3,()+9,. [ k(5. 7,3,(0)+6,)d7. [ h(s,7,y,(2)+6,)d7)

242
Vol.2.Issue.2.2014




R.PRABAKARAN et al., Bull.Math.&Stat.Res

— f(5,Y(9) 49, [ k(s,7,y(0) +$,)d. [ h(s,7, y(@)+6,)dT))ds]
_E ey, 0+ ) - st 50+
+M, [ |E7 [l Acs. x5, 3, (5)+0.) = Als. x(5) g (5, () +,)

E H[H E™ HH g(b,y,(b)+¢,)—gb, y(b)+9, )H

ds

+M M, [

+M J: HE ‘IHHA(s, x(5))g(s,y,(s)+8,)— A(s, x(5)) g (s, y(s) + @,)||ds

b ~ s ~ a -
+M, [ |E" HH F(5,2,()+8,. [ k(s,7,3,(0)+6,)d7. | h(s,7., (@) +6,)|d7)

H— F5,Y(9)+9,, | k(s,7,y(@)+8,)d7, | h(s,7, y(2) +§,)d7)

ds](mdn

[ |E ‘HHf (5,2,()+8,. [ k(5,7,3,(@) + 6.7, [ h(s,7,y, (@) +,)d7)

536 +6,. [ K5, 3(0)+ 0. [ (5.7, 5(2)+ 6, ) ) ds)

-0 jgn—o

Thus F is continuous .this completes the proof that F is completely continuous

Finally the set {(F) = {y € C,? ty=AFy, A€ (0,1)} is bounded .since for every solution yin {(F),

the function x = y + ¢ is a mild solution of (5)-(6) for which we have proved that ”)C”1 < r and hence

I, <7 +[e]
Consequently, by Schaefer’s theorem , the operator F' has a fixed point in Cg .This means that any fixed
point of F'is a mild solution of (1)-(2) on [ satisfying (Fx)(t) = x(t) .Thus the system (1)-(2) is controllable

on I
SOBOLEV TYPE QUASILINEAR NEUTRAL IMPULSIVE SYSTEMS

However, one may easily visualize that abrupt changes such as shock, harvesting and disasters may occur in
nature. These phenomena are short time perturbations whose durationis negligible in comparison with the
duration of the whole evolution process. Consequently,it is natural to assume, in modeling these problems,
that these perturbations act instantaneously, that is in the form of impulses. The theory of impulsive
differential equation [14, 15, 16] is much richer than the corresponding theory of differential equations
without impulsive effects. The impulsive condition

Au(t)=u(t") —u(t ) =1, )i =1,2,.......m,

is a combination of traditional initial value problems and short-term perturbations whose duration is negligible
in comparison with the duration of the process. Liu [17] discussed the iterative methods for the solution of
impulsive functional differential systems. Consider the class of sobolev-type quasilinear neutral functional
impulsive integro differential system with nonlocal conditions of the form
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i[Ex(t) —g(t,x)] = A(t, x(t))x(r) + Bu(t) +
dt (1)

£, x(0), _[;k(t,s,xs s, [ h(t,5,x,)ds) e [0.5]
AX(E) =1, (% )k =12 m,
x(0)+g(x) =x,

Where the state variable x(-)takes values in a separable banach space X with norm ||~||and the control

function u ()is givenin L*(I,U). A banach space of admissible control functions with U

As a banach space the intervall :[O’b].Eand Biis a bounded linear operator from U'into U and the
function
g UXC o X, [ IXCXXXX > X, k:IXIXC— X, h:IXIXC—>X,q:C([,X)>X |

re

given functions and I, : X — X are appropriate functions and the symbol Ax(f, ) represents the jump of

the functionu —> £, which is defined by Ax(t, ) = x(¢; ) — x(t; ) .The norm of X is denoted by”” the
solution of the (7)-(9) equation is given by

x(t)= E"'U (1,0)[Ex, — Eq(x)— g(0,x,)]+ E"g(t.x,)

+ jo E"'U(t, s)Cu(s)ds + jo ET'U(t, 5)A(s, x(5)) g (s, x, )ds
+ jo E'U®, )f (s.x,, J.Osk(s,T,xT )T, jo "h(s,T,x,)dT)ds,
+ > B'S(t—1)I,x(t,)

0<t,<t tel
Ax(t,) =1, (xtk),k:1,2, ................ m,
In order to prove the main result we shall assume some additional hypothesis:

(H10) the maps I, : X — X are continuous and there exists constant I > (0 suchthat

1| < 1|(x)|, forke R & xe X

(H11) The following inequality holds , the function

~ _ r 0 a 0
() = max{L, M, |E" M, (), M, (t.0,M,, (t,0), | =M, (@,5)ds, [ o M. (5,5)ds,)

Satisfies

erﬁ(s)ds< :o ds

4 5+2Q,(5)+2Q,(s)+Q,(s)
Where
d = || EgO] | |+ L1+, 3,

k=1
And
d, = M,|E7 (||| +|E7 (M, + ML+ M, |E7 | b
+M,[E7| jo"Mf(s)Q3[r+ J:Mk(s,T)Q(T)dT+ jO“Mk(s,t)Qz(f)df]ds}+M1§m;1k
k=1

Theorem 4.1
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If the hypotheses [H1] - [H8], [H10] - [H11] are satisfiedd, then the system (7) - (9) is controllable on I

Proof. Using the hypothese [H3] for an arbitrary function x() define the control
ut)=W'[x,~E UbO)Ex ~Edx)~g0.x)1-E 'g(b.x,)

~[ B0, 5)As 1))t 5 )ds= [ E'U,9)f s, [ K T T [ s T ) Tds— Y VB, )10

Ocrh<t (3)
If x(¢) = y(t)+ ¢?(t),t € [O, b], it is easy to see that y satisfied
y(0) = E"UD.0)Ex, — Eq(x)]+ E™'g(1.y, +4,)

~ETU0)g(0,0)+ [ E'U (1) A(s, ()8 (5. v, + 9,)ds
+ jo E7U(t,7)CW ™'[x, — E"'U (b,0)[Ex, — Eq(x)— g(0,4,)]- E"' g(b,y, +8,)
- jj EUb,5)Als, x(5))g(s, , +,)ds— Jj EUb.5)f (5.5, +0,. [ Ks.7.y, + @), [ (5.7, y,+ ) D)ds

= S UGy, +8))m)dn

O<tk<t

+[ B9 f (5,5, 40, [ k(5,73 +0)d7, [ h(s, 7,3, +)dDds + Y U1 (v, +9)ht € 1

O<tk<t

If and only if X satisfies

x(t) = E"'U(t,0)[Ex, — Eq(x)]+ E”'g(t,x,)
- E"'U(t,0)g(0, X,)+ Lt E7'U(t,5)A(s,x(5))g(s, x,)ds
+ jo E"U(t,m)CW ™' [x, — E"U (b,0)[ Ex, — Eq(x) — g(0,x,)] - E"'g(b. x,)

E7'U(b,s)f (s, X, J.OS k(s,7,x,)d, J.: h(s,7,x,)dt)ds

- jol E™'U (b, s)A(s, x(5))g (s, x, )ds — j: 1m)dn
= YUt (x)]

O<tk<b

+ jo E"U@,s)f(s,x,, J:k(s,f, x.)d, jo (s, x,)dT)ds = D Ut (x))t e |

O<tk<t

Define C; ={ye C, : ¥, =0} and we now show that when using the control , the operator

F:C _>C£, defined by

(Fy)(0) = E"'U (b.0) Ex, — Eq(x)]+ E™'g (1, y, +¢,)
—E"U(008(0,6,) + [ E"U (2, 9)A(s, x(5))g (s, ¥, +,)ds

+[ ENUGmCW x, — EU GO Ex, — Eg(x) = g(0.0)1- E'g (b, ¥, +4,)
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_ j;E-IU(b,s)A(s,x(s))g(s,ys +¢,)ds

~[EUG.9)f (5.3, +0,. [ k(s.7.y, + 04, [ h(s,7. 3, +g)dT)ds = D U1)1, (v, +$)N0ndn

O<tk<b

+[EU@) [y, +0,.[ k(5,7 3, +0,)d7, [ h(s,7,y, +9,)dD)ds + Y U101, (v, +§)lte |

O<rk<t

has a fixed point.

Clearly x(b)= x, which means that the control U steers the system (7) - (9) from the intial function ¢ to x,
in time b, provided we can obtain a fixed point of the nonlinear operator F.
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