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ABSTRACT 

This manuscript deals with the estimation of population mean in two phase 

sampling using auxiliary information. In the present paper an improved 

estimator of population mean has been proposed under two phase 

sampling scheme. The expressions for the bias and mean square errors 

(MSE) have been obtained up to the first order of approximation. The 

minimum value of the MSE of the proposed estimator is also obtained for 

the optimum value of the constant (kappa). A comparison has been made 

with the existing estimators in two phase sampling. Finally am empirical 

study is also carried out which shows improvement of proposed estimator 

over other estimators in two phase sampling in the sense of having lesser 

mean squared error. 
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INTRODUCTION 

The auxiliary information is being used in sampling theory since the development of the sampling theory 

and its application to the applied areas of the society. It is well established among the statisticians and the 

researchers that the suitable use of auxiliary information improves the efficiency of the estimates of the 

parameters under consideration by increasing the precision of the estimates. The auxiliary variable which 

provides the auxiliary information is highly correlated (positively or negatively) with the main variable under 

study. The auxiliary information is used for different purposes in sampling theory. It is used for the purposes of 

stratification in stratified sampling, measures of sizes in PPS (Probability Proportional to Size) sampling etc. It is 

used at both the stages of designing and the estimation stages of the sampling. In the present draft we have 

used it at estimation stage for estimating the population mean of the main variable under study in two phase 

or double sampling. 
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 Let y and x be the study and the auxiliary variables respectively. When the variable y under study and 

the auxiliary variable x is highly positively correlated and the line of regression of y on x passes through origin, 

the ratio type estimators are used to estimate the population parameters of the main variable under study and 

the product type estimators are used to estimate the parameter under study when y and x are highly 

negatively correlated to each other. When the regression line does not passes through origin or its 

neighbourhood, regression estimator is appropriate estimator for the estimation of population parameter of 

the main variable under study. In the present study we have considered the case of positive correlation and 

have used the ratio type estimators for the estimation of population mean in two phase sampling. 

2. MATERIAL AND METHODS 

 Let )...,,.........,( 21 NUUUU  be the finite population consisting of N distinct and identifiable units out of 

which a sample of size n is drawn with simple random sampling without replacement (SRSWOR) technique. Let 
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be the respective sample means. When X  is not known, double sampling or 

two phase sampling is used to estimate the population mean of the study variable y. Under This sampling 

technique the following procedure is used for the sample selection, 

(i) A large sample S  of size n )( Nn is drawn from the population by SRSWOR and the 

observations are taken only on the auxiliary variable x to estimate the population mean X  of the 

auxiliary variate. 

(ii) Then the sample S of size n )( Nn is drawn either from S  or directly from the population of size 

N to observe both the study variable and the auxiliary variable.  

It is well known that to estimate any of the parameters the appropriate estimators are the 

corresponding statistics, therefore the appropriate estimator for estimating population mean is the 

sample mean given by, 

yt0                  (2.1) 

The variance of the estimator 0t , up to the first order of approximation is, 
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Cochran (1940) used the auxiliary information and proposed the classical ratio type estimator in simple 

random sampling as, 

x

X
ytR            (2.3) 

The double sampling version of Cochran (1940) estimator is defined as, 

x
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is an unbiased estimator of population mean X  of auxiliary variable based 

on the sample of size n .  

The bias and the mean square error of 
d

Rt , up to the first order of approximation respectively are, 
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Singh and Tailor (2003) utilized the correlation coefficient between x and y and proposed the following 

estimator of population mean in simple random sampling as, 
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Malik and Tailor (2013) suggested the double sampling version of Singh and Tailor (2003) estimator as, 
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The bias and the mean square error of 
d

STt , up to the first order of approximations respectively are, 
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Where, 

yxX

X
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3. PROPOSED ESTIMATOR 

Motivated by Malik and Tailor (2013) and Prasad (1989), we propose the following estimator of population 

mean in two phase sampling as, 
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Where is a constant known as kappa to be determined such that the mean square error of t  is minimum. 

To study the large sample properties of the proposed estimator, we have the following approximations as, 
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Expressing the proposed estimator in terms of ie ’s, we have 
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Subtracting Y on both sides of (2.2) and simplifying, we get 
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Taking expectations on both the sides of above equation, we get the bias of t , up to the first order of 

approximation after putting the values of different expectations as,  
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Squaring equation (2.3) on both sides and taking expectations, we have MSE of t  up to the first order of 

approximation as, 
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Putting the values of different expectations, we have MSE of t  up to the first order of approximation as, 
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Which is minimum for, 
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The minimum mean square error of t  up to the first order of approximation is, 
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4. EFFICIENCY COMPARISON  

From (2.2) and (3.6), we have  
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From (2.6) and (3.6), we have  
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From (2.10) and (3.6), we have  
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5. EMPIRICAL EXAMPLE 

For the justifications of the performances of the proposed and the existing estimators of population mean in 

two phase random sampling, we have considered two populations given below as, 

Population-I [Source: Das, 1988] 

Y: the number of agricultural labours for 1971, 

X: the number of agricultural labours for 1961, 

068.39Y , 111.25X , 278N , 60n , 180n ,  

4451.1yC , 6198.1xC , 7213.0yx . 

Population-II [Source: Cochran, 1977] 

Y: the number of persons per block, 

X: the number of rooms per block, 

10.101Y , 80.58X , 20N , 8n , 12n ,  

14450.0yC , 12810.0xC , 6500.0yx . 

6. RESULTS AND CONCLUSION 

From the theoretical discussions in section-3 and the results in table-1, we see that the proposed estimator 

has lesser mean squared error and thus highest percentage relative efficiency. Therefore we infer that the 

proposed estimator t  is better than the sample mean, classical ratio estimator and the Malik and Tailor (2013) 

estimator as it has lesser mean square error under two phase random sampling technique. Therefore the 

proposed estimator should be preferred for the estimation of population mean in two phase random 

sampling. 

Table-1: Percentage Relative Efficiency (PRE) of 0t , 
d

Rt , 
d

STt and t  with respect to 0t . 

Estimator 

PRE(., yt0 ) 

Population-I Population-II 

0t  100.00 100.00 

d

Rt  142.11 117.65 

d

STt  150.00 125.00 

t  166.48 132.86 
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