Vol.2.Issue.4.2014

http://www.bomsr.com

RESEARCH ARTICLE

BULLETIN OF MATHEMATICS AND STATISTICS RESEARCH

A Peer Reviewed International Research Journal

ANTI-HAUSDORFF U-SPACES

SUBRATA MAJUMDAR¹, NASIMA AKHTER², SWAPAN KUMAR DAS^{3*}

 ¹Professor of Mathematics, University of Rajshahi, Rajshahi, Bangladesh
²Professor of Mathematics, University of Rajshahi, Rajshahi, Bangladesh
³Associate Professor of Mathematics, University of Development Alternative (UODA), House No.- 80, Satmajid Road, Dhanmondi, Dhaka-1209, Bangladesh

SWAPAN KUMAR DAS Article Info: Article received :21/11/2014 Revised on:06/12/2014 Accepted on:08/12/2014

ABSTRACT

This is the third in a series of papers on U-spaces. Here Anti-Hausdorffness has been introduced for U- spaces and many topological theorems related to anti-Hausdorffness have been generalized to U- spaces, as an extension of study of supratopological spaces.

Key Words: U-space, Trivial anti-Hausdorff U-space, Non-trivial anti-Hausdorff U-space, U- Continuous image, Quotient U-space, Irreducible.

AMS Mathematics Subject Classification (2010): 54A40, 54D10, 54G12, 54D15

©KY PUBLICATIONS

INTRODUCTION

In a previous paper [1] we have introduced U- spaces and studied some of their properties. In this paper we use the terminology of [1]. Some study of these spaces was done previously in ([2],[3],[4],[5]) in less general form, and the spaces were called supratopological spaces. Anti-Hausdorff topological space was introduced and studied in [6]. In this paper the concept of anti-Hausdorff U-spaces has been introduced and a few important properties of such spaces have been studied. A number of interesting examples have been constructed to prove non- trivialness of such results.

2. ANTI- HAUSDORFF U- SPACES

We have generalized some results on anti-Hausdorff topological spaces in [6] to U-spaces. We recall that a U- space X is a non-empty set X together with a collection U of subsets of X such that U is closed under unions and X and Φ belong to U. A U-space is called trivial if it is a topological space.

Definition 2.1 [6] A U-space X with $|x| \ge 2$ is said to be anti-Hausdorff U-space, if for every pair of distinct points x, y in X and pair of distinct U-open sets G and H such that $x \in G$, $y \in H$, $G \cap H^{\neq \Phi}$, i.e., if no two distinct points can be separated by disjoint U-open sets.

Here, |X| denoted the number of elements of X. An anti-Hausdorff U-space which is not a topological space will be called a non-trivial anti-Hausdorff U-space. Otherwise it is called trivial. It is easily seen that an anti-Hausdorff U-space X is non-trivial only if $|X| \ge 3$.

Example 2.1 Let X = {a, b, c}, U₁ = {X, Φ , {a, b}, {a, c}} and U₂ = {X, Φ , {b, c}, {a, c}}. Then (X, U₁) and (X, U₂) are non-trivial anti-Hausdorff U-spaces.

Example 2.2 Let X = {a, b, c, d} and U₁ = {X, Φ , {a, b, c}, {a, d}}, U₂ = {X, Φ , {a, b}, {a, c}, {a, b, c}}. Then (X, U₁) and (X, U₂) are non-trivial anti-Hausdorff U-spaces.

Example 2.3 Let X = N, $U = \{X, \Phi, \{1, 2, 3\}, \{1, 4, 5\}, \{1, 2, 3, 4, 5\}\}$. Then (X, U) is a non-trivial anti-Hausdorff U-space.

Example 2.4 Let X = R, $U = \{X, \Phi, N, Z, 2Z, N \cup 2Z\}$. Then (X, U) is a non-trivial anti-Hausdorff U-space.

Theorem 2.1 [6] A U-subspace of a non-trivial anti-Hausdorff U-space need not be anti-Hausdorff. Proof: Let us consider the U-space (X, U), where $X = \{a, b, c, d\}$ and $U = \{X, \Phi, \{a, b\}, \{a, c\}, \{a, b, c\}\}$. Then (X, U) is a non-trivial anti-Hausdorff U-space, since there is no pair of disjoint non-empty U-open sets in X. Now let $Y = \{b, c\}$.

Then as a subspace of X, Y has the U-structure, U = {Y, Φ , {b},{c}}. Obviously, Y is not anti-Hausdorff U-space.

Theorem 2.2 [6] If A and B are two non-trivial anti-Hausdorff U-subspaces of a U-space X, then the subspace $A \cap B$ need not be a non-trivial anti-Hausdorff U-space.

Proof: Let X = {a, b, c, d, e, f }, U = {X, Φ , {a, b, c}, {b, c, d}, {a, b, c, d}, {b, c, d, e, f}. Clearly (X, U) is a non-trivial U-space. Let A = {a, c, d, f } and B = {a, b, d, f}. Then A and B are U-subspace of X with

 $U_{A} = \{A, \Phi, \{a, c\}, \{c, d\}, \{a, c, d\}, \{c, d, f\}\}, U_{B} = \{B, \Phi, \{a, b\}, \{b, d\}, \{a, b, d\}, \{b, d, f\}\}.$

Clearly both A and B are non-trivial anti-Hausdorff U-subspaces of X.

Now $A \cap B = \{a, d, f\}$ and $U_A \cap_B = \{A \cap B, \Phi, \{a\}, \{d\}, \{a, d\}, \{d, f\}\}$. Then $A \cap B$ is a trivial U-space, which is not anti-Hausdorff.

In the situation of Theorem-2.2, it is also possible that A \cap B is a non-trivial anti-Hausdorff U-space as is shown by the following example.

Example 2.5 Let X= {a, b, c, d, e}, U = {X, Φ , {a, b}, {a, b, c}, {a, c, d, e}. Clearly (X, U) is a non-trivial U-space. Let A = {a, b, c, d} and B = {a, b, c, e}. Then A and B are U-subspaces of X with U_A = {A, Φ , {a, b}, {a, b, c}, {a, c, d}}, U_B = {B, Φ , {a, b}, {a, b, c}, {a, c, e}.

Clearly both A and B are non-trivial anti-Hausdorff U-subspaces.

Now $A \cap B = \{a, b, c\}$ and $U_A \cap_B = \{A \cap B, \Phi, \{a, b\}, \{a, c\}\}$ which is a non-trivial anti-Hausdorff U-space.

Remark 2.1 [6] If A_1 and A_2 are two non-trivial subspaces of a non-trivial U-space X, then the subspace $A_1 \cap A_2$ may be non-trivial anti-Hausdorff U-space even if neither A_1 nor A_2 is so.

Proof: Let X = {a, b, c, d, f}, U = { X, Φ , {a}, {b, c}, {c, d}, {a, b, c}, {a, c, d}, {f}, {b, c, f}, {c, d, f}, {a, f}, {a, b, c, f}, {a, c, d, f}, {b, c, d}, {a, b, c, d}, {b, c, d}, {b, c, d}, {b, c, d}, {c, d, f}.

Clearly, X is a non-trivial U-space.

Let $A_1 = \{a, b, c, d\}$ and $A_2 = \{b, c, d, f\}$.

Then the U-structure U_A1 and U_A2 on A₁ and A₂ respectively are U_A1 = {A₁, Φ , {a},{b, c,{c, d}, {a, b, c},{a, c, d},{b, c, d},{b, c, d}} and U_A2 = {A₂, Φ , {f},{b, c}, {c, d},{b, c, f}, {b, c, d}, {c, d, f}.

Clearly both A₁ and A₂ are non-trivial subspaces of a U-space X, neither of which is anti-Hausdorff.

Now $A_1 \cap A_2 = \{b, c, d\}$ and $U_{A^1} \cap_{A^2} = \{A_1 \cap A_2, \Phi, \{b, c\}, \{c, d\}\}$. Thus $A_1 \cap A_2$ is a non-trivial anti- Hausdorff U-space.

Theorem 2.3 [6] Let A_1 and A_2 be two anti-Hausdorff U-spaces with U-structures U¹ and U² respectively. Then $(A_1 \cup A_2 \langle U^1 \cup U^2 \rangle)$ need not be anti-Hausdorff U-space. Here $\langle U^1 \cup U^2 \rangle$ is the U-structure generated by $U^1 \cup U^2$ in $A_1 \cup A_2$.

Proof: Let $A_1 = \{a, c, d, e\} \cup I = \{A_1, \Phi, \{a\}, \{a, c\}, \{a, c, d\}, \{a, d, e\}\}$, and $A_2 = \{b, c, d, e\} \cup I = \{A_2, \Phi, \{b\}, \{b, b\}, \{b,$ c},{b, c, d},{b, d, e}}. Then (A_1, U^1) and (A_2, U^2) are non-trivial anti-Hausdorff U-spaces.

 Φ ,{a},{b},{a, c},{b, c},{a, c, d}, {a, d, e},{b, c, d}, {b, d, e},{a, b},{a, b, c},{a, b, c, d},{a, b, d, e}. So, in (X, U), $a \in \{a\}, b \in \{b\}$ with $\{a\}, \{b\} \in U$ and $\{a\} \cap \{b\} = \Phi$. Hence (X, U) is not an anti- Hausdorff U-space.

Theorem 2.4 [6] Every U-continuous image of an anti- Hausdorff U-space is an anti-Hausdorff U-space.

Proof: Let X, Y be two U-spaces where X is anti-Hausdorff U-space. Let f be a U-continuous map of X onto Y. Let y_1 and y_2 be two distinct points of Y, and let H_1 and H_2 be two U-open sets in Y such that $y_1 \in H_1$, $y_2 \in H_2$. Since f is onto there exist x_1 , x_2 in X such that $f(x_1) = y_1$, $f(x_2) = y_2$. Let $G_1 = f^{-1}(H_1)$, $G_2 = f^{-1}(H_2)$. Since f is U-continuous, both G_1 and G_2 are U-open sets. Since X is anti-Hausdorff U-space, $G_1 \cap G_2 \neq \Phi$. Let $x \in G_1 \cap G_2$, then $f(x) \in H_1 \cap H_2$. Thus $H_1 \cap H_2 \neq \Phi$. So, Y is anti-Hausdorff U-space.

Definition 2.2 Let (X, U) be U-space and R an equivalence relation on X. The equivalence class for each $x \in X$ is denoted by X. We define U-structure $\overline{\mathcal{U}}$ on the collection of equivalence classes $\frac{\ddot{R}}{R}$ of X with respect to R as follows. Any subset \overline{V} of $\frac{x}{R}$ will be a member of \overline{u} iff $\{x \in X \mid \overline{x} \in \overline{V}\} \in U$, i.e., the collection of equivalence classes of every U-open set V of X is

U-open in $\overline{\mathbb{R}}$ and these are the only U-open members of $\frac{X}{\mathbb{R}}$.

This U-structure $\overline{\alpha}$ is called the identification U-structure or the quotient U-structure on X, and $(\hat{\overline{R}}, \overline{\overline{\mathcal{U}}})$ is called the identification U-space or the quotient U-space of X with respect to R.

Corollary 2.1. If X is an anti-Hausdorff U-space and R is an equivalence relation on X, then the quotient U-space \overline{R} is anti-Hausdorff U-space.

Proof: It follows from the definition of quotient U-space that the map $f: X \rightarrow \frac{X}{R}$ given by f(x) = cls x is continuous and onto. The proof is then follows from Theorem 2.4.

Definition 2.3 [6] A U-space X is said to be U-irreducible if every pair of non-empty U-open sets in X intersect.

Thus a U-space X is U-irreducible if, for every pair of non-empty U-open sets V, W in X, V \cap W $\neq \Phi$.

Theorem 2.5 [6] Let X be a U-space. For the statements:

- (i) X is anti-Hausdorff U-space,
- (ii) X is U-irreducible,
- (iii) Every non- empty U-open set in X is connected U-space,
- (iv) Every non- empty U-open set in X is dense in X,

following implications hold: (i) \Leftrightarrow (ii), (iii) \Rightarrow (ii) and (ii) \Leftrightarrow (iv).

Proof: We first prove (i) \Leftrightarrow (ii).

To prove (i) \Rightarrow (ii) let X be a anti- Hausdorff U-space. If possible suppose that X is not

U-irreducible. Then there exist non- empty U-open sets V and W in X such that V \cap W = Φ . Since V and W are non- empty, there exist $x \in V$ and $y \in W$. Since $V \cap W = \Phi$, $x \neq y$. X being anti-Hausdorff U-space, this is a contradiction. Therefore X is U-irreducible.

We now prove (ii) \Rightarrow (i). Let X be U-irreducible. If possible, let X be not anti-Hausdorff

U-space. Then there exist x, $y \in X$ with x^{\neq} y and U-open sets V and W in X with $V \cap W = \Phi$ and $x \in V$, $y \in W$. Since V and W are non-empty, this is a contradiction to the fact that X is U-irreducible.

Hence X is anti-Hausdorff U-space.

To prove (iii) \Rightarrow (ii), let every U-open set in X be connected U-space. If X is not U-irreducible, then there exist non-empty U-open sets V₁ and V₂ in X, such that V₁ \cap V₂ = Φ . This implies that the U-open set V = V₁ \cup V₂ is a disconnected U-open set in X. This is a contradiction to our hypothesis. Hence X is U-irreducible.

We now prove (ii) \Leftrightarrow (iv). Let X be a U-irreducible space. Let V be a non- empty U-open set in X and let $x \in X$. Let W be a U-open set in X such that $x \in W$. Then $W \neq \Phi$. Since X is

U-irreducible, $V \cap W \neq \Phi$. So, $x \in \overline{V}$. Thus $X = \overline{V}$. Thus (ii) \Rightarrow (iv).

Conversely, suppose every non-empty U-open set in X is dense in X. Let V and W be two non-empty U-open sets in X and let $x \in V$. Since $\overline{w} = X$ and V is a neighborhood of x, $V \cap W \neq \Phi$. So X is U-irreducible. Therefore (iv) \Rightarrow (ii). The proof of the theorem is thus complete.

REFERENCES:

- [1]. Akhter N., Das S. K. and Majumdar S (2014), On Hausdorff and compact U- spaces, Annals of Pure and Applied Mathematics, Vol.5, No. 2, 168-182.
- [2]. Andrijevic D.(1996), On b- open sets, Mat. Vesnik, 48, 59-64.
- [3]. Devi R., S. Sampathkumar and M. Caldas(2008), On supra α open sets and S α continuous functions, General Mathematics, Vol. 16, Nr. 2, 77-84.
- [4]. A. S. Mashhour A. S., et al., (1983), On supratopological spaces, Indian J. pure appl, Math, 14(4), 502-510
- [5]. Sayed O. R. and Noiri T.(2010), On supra b- open sets and supra b- continuity on topological spaces, European Journal of pure and applied Mathematics, Vol. 3, No. 2, 295-302.
- [6]. Majumdar S.and Mitra M, (31 December, 2012), Anti- Hausdorff spaces, Journal of Physical Sciences Vol.16, 117-123.
- [7]. Majumdar S., Akher N. and Das S. K, Paracompact U- spaces (2014), Journal of Physical Sciences, Vol. 19, ISSN: 2350-0352, 26 December 2014.