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ABSTRACT

This is the fourth in a series of papers on U-spaces. Here several
generalizations of topological spaces (I-spaces, CU-spaces, CUl-spaces, FU-
spaces and FUI- spaces) have been introduced and many topological
theorems have been generalized to I- spaces, as an extension of study of
infratopological spaces. We have generalized some properties of topological

spaces to the other spaces too.
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INTRODUCTION

In a previous paper [1] we have introduced U- spaces and studied some of their properties. In this
paper we use the terminology of [1]. Some study of these spaces was done previously in ([2],[31,[8],[12]) in less
general form, and the spaces were called supratopological spaces. In this paper we have introduced the
concepts of I-spaces, CU-spaces, CUl-spaces, FU-spaces and FUI-spaces as generalization of topological spaces.
I-spaces have been called infratopological spaces by some authors [4], [9], [10]. The concepts of limit point of a
set, Interior point of a set, closure of a set, three types of continuity, compactness, connectedness, and
separation axioms in the topological spaces have been generalized to the case of I-spaces. The concepts can
be defined similarly for CU-spaces, CUl-spaces, FU-spaces and FUl-spaces. We have constructed many
examples and proved a number of theorems involving these concepts in case of I-spaces. For the other types
of spaces some of these have been dealt with briefly.
2. I-SPACES
Definition 2.1 Let X be a non- empty set. A collection | of subsets of X is called an I- structure on X if
(i) X, e,
(i) G4, Gy, G3, Gy, Gs, » =+ - ,G, € I|,implies Gi\G, NGz Gs G5 - oe - NG, € 1.
Then (X, | )is called an I-space.
Example 2.1 For a non- empty X, {X, @ }is an I-structure. In fact every topology is an
I-structure on X, and so, every topological space is an I-space.
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Example 2.2 LetX=2Z,and| ={{mZ |m e N} A{ D}y

Then mZ mm/Z =1Z, where m, m/e N and | =l.c.m of m and m/.
Then (X, | ) is an I-space. However, X is not a U-space.
Definition 2. 2 An I-space which is not a topological space is called a proper I-space.
Example 2.3 LetX={a, b, c, d}, | ={X, D {a},{a, b}{a, c}.{a, d},{a, b, d},{a, ¢, d}} is a proper I-structure which is
not a topology, since {a, b}\U{a, c}={a, b, c} & I.
Definition 2.3 Let X = R and | = {R, @, all finite intersection of sets of the form (a,b), a, b€ R}. Then (X, | ) is an
I-space and is called the usual I-space R of the first kind. Thus, | consists of R, @ and the intervals (a, b).
Definition 2.4 The usual I-space R of the second kind is the I-space (R, | ), where
| = The collection of the finite intersection of all rays (-o0, b) and (a, o) together with R and @ . Thus, |
consists of the sets of the form R, @, (-o0,b), (a,20) and (a, b).
We may define the interior points and the interior of a set in an I-space as in the case of a topological space.
The limit points and the closure of a subset in an I-space may be defined similarly. But in an I-space the interior
and the closure of a subset may not have the properties of those in a topological space.

We consider below the following definitions in this situation. Let (X, | ) be an I-space. Let AC X. We
have thus the following definitions.
Definition 2.5 A point x € X such that, for each I- open set G which contains x, G/ A contains an element
other than x, is called a limit point of A. The set of all limit points of A is called the derived set of A and is
denoted by D(A).

Definition 2.6 The closure of A written A, is the subset of X consists of the elements x such that for each an I-
open set G containing x, G VA# D .ie, A= {xeX| for each Ge | with x€G, G\A# D }. Clearly, A=

AU D(A)

Definition 2.7 A point x€ X is called an interior point of A, if there is an l-open set G such that x€ G and
GCA.

Definition 2.8 The set of all interior points of A is called the interior of A and is denoted by IntA. Thus, IntA ={

xeX|E| Ge | suchthatxeGC A}

Comment 2.1
For a subset A of a topological space X,

(i) A isan I-closed set and is the intersection of all I-closed supersets of A.
(i) IntA is an l-open set and is the union of all I-open subsets of A.

But these properties may or may not hold for A and IntA in I-spaces. The truth of the comment follows from
the following theorems and illustrations;

1. (i) Let X = The usual I-space R of the first or the second kind. Let A= Q. Then A =R, and R is I-closed and is
the intersection of all I-closed supersets of Q.

(i) Let X ={a, b, ¢, d}. Then | ={X, D ,{a},{a,b}, {a,c},{a, d},{a, b,d}, {a,c, d}} is proper

I-structure on X. Then (X, | )is a proper |-space. The | -closed sets are {c, d}, {b, d}, {b, c, d}, {c}, {b}, {b, c}, X,
(ON

Let A ={b}.Then A ={b}. A is an I-closed and is the intersection of all I-closed supersets of A.
2. Let A={d}. Then A={d}. A isnotan I-closed, but is the intersection of all I-closed supersets of A.

3.(i) Let X be the usual I- space R of the first or the second kind, and let A = N. then A =N, and N is neither I-
closed nor is the intersection of all I-closed supersets of N.

(i) LetX={a, b, c,d}and let | ={X, D ,{b},{d}, {a, b},{b,d}}. Then (X, | )is a proper

I-space. The I-closed sets are {a, ¢, d}, {a, b, c},{c, d}, {a, c}, X, D.

Let A = {b}. Then A={a, b}. A is neither I-closed nor is the intersection of all I-closed supersets of A.
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4.(i) LetX=The usual I-space R, A=Q.ThenIntA=IntQ= @, andsoIntAisan|-open and is the union of all
I-opensets GC A=Q.

(ii) Let X ={a, b, ¢, d}and | ={X, D ,{a},{a, c}, {a, d},{a, b, d}} is a proper I- structure. The

(X, 1 )is a proper I- space.

Let A = {a}. Then IntA = {a}, and so IntA is an I-open and is the union of all I- open sets G C A.

5. (i) Let X ={a,b,c,d}and | ={X, @ {a}{d}{a, c}{a, d},{b, d}} is a proper I-structure. The (X, | )is a proper I-
space.

Let A={a, ¢, d}. Then IntA = {a, c, d}, and so IntA is not an I-open and is the union of all

l-open sets GC A.

(i) Let X be the usual I-space R of the second kind, and let A = [a, b] U [c, d],

where a <b <c < d. I-open sets are of the form (-0,b),(a, ©),(a, b), R, D

IntA = (a, b) U (c, d) is not an l-open set but is a union of l-open sets.

3. I-CONTINUITY

We define I-continuous, | -continuous and I*-continuous maps as we have done for U-continuous, U -
continuous and U*-continuous maps.

Definition 3.1 If X, Y are I-spaces (resp. X I-space, Y top-space; X top-space, Y I-space) a map f: X —> Y is said to
be I-continuous (resp. | -continuous,|*-continuous) if for each I-open set (resp. open, I-open) Hin Y, f(H) is
an l-open (resp. I-open, open ) setin X .

Example 3.1 LetX={a, b,c,d}, | ={X, @, {a}, {b}, {d}, {a, b}, {a, d}, {b, c, d}}

Y={p,q,r,s} | ={Y, D {p}, {a}, {s}, {p, al.{p, s}{q, r, s}}. Let f: X —> Y be defined by f(a) = p, f(b) = q, f(c) =,
f(d) =s.

Then fis I-continuous.

Example 3.2 LetX={a, b, c, d}, | ={X,®,{a},{b}{a, b},{a, c},{b, d}}.

LetY={p,q, r}, T ={Y, ® {p}, {a}, {p, r}}. Then (X, | ) is an I-space and (Y, | ) is a topological space. The
function f: X — Y is defined by f(a) = p, f(b) = q, f(c) =r, f(d) = . Then

fis |_-continuous.

Example 3.3 LetX={a, b,c,d}, T ={X, ®,{b}{c}{b, c}{c, d},{b, c, d}}

Y={p,q,rs} | ={Y,®, {p}, {a}, {p, a}, {p, r}, {q, s}}. Then (Y, | )is an I- space. The function f: X —> Y is defined
by f(a) = p, f(b) = q, f(c) = g, f(d) =s.

Then fis | *-continuous.

4. COMPACTNESS

Definition 4.1 Let (X,l ) be an |- space. An |-open cover of subset K is a collection {G , } of

l-open sets suchthatk< | J G, .

o
Definition 4.2 An |-space X is said to be compact if every I-open cover of X has a finite sub-cover.
A subset K of a I-space X is said to be compact if every I-open cover of K has a finite sub-cover.

Example 4.1 LetX=NandletA ={n€N| nZno},I ={CD,{An |n0 €N}}. Then (X, | )isan I-space. In this

I-space, N is compact, because every |-open cover of N must contain A; = N.
Comment 4. 1 We note however that

(i) Forl-space (N, | ), where | ={N,®}U{n0+1,no+2, ....... n0+r| n,,r€N} Nisnot compact.

(i) Inthe usual I-space R, of the first kind, (and also of the second kind), N is not compact.
1 1
For, {(n - E, n+ E )| n € N}is an l-open cover of N which does not have a finite subcover.

Theorem 4.1 Every I-continuous image of a compact I-space is compact.
The proof is similar to that in topology.
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The Heine-Borel Theorem of topology, ‘A subset A of the usual space R is compact if and only if A is closed and
bounded’, has the following forms in the case of the usual I-space R of the first kind:

Theorem 4.2

(1) The compact subsets of R are precisely the finite subsets of R.
(2) No non-empty compact subset is I-closed.

(3) No non-empty I-closed subset is compact.

Proof :

(1)  For, if Ais an infinite subset of R, let A = {a,} _\ be a countable subset of R, and suppose a, < a, ., for

each n. Consider the intervals

(S S .
I = (an —7“,an +?n],where e, =min{a,,, —a,,a,—a, .} Then, I, N1, =®, ifn= n'If{}
covers A, let C be this cover. Otherwise, let {J, } be a collection of l-open sets such that (i)

Jy G(U |n J = @, for each k, and (i) {I,}\U {Ji} is a cover of A. In this case, let C denote this cover. In both
n

the cases, C does not have a finite subcover. Thus, the compact subsets of R are finite.

(2) For, the definition of the I-structure on R shows that every non-empty I-closed set must contain subsets
of the form (- 00,a] and [b, 00 ) both of which are infinite.Hence (2) follows from (1)

(3) Thediscussionsin (1) and (2) prove (3).

For the usual I-space R of the second kind, the theorem corresponding to the Heine-Borel Theorem in topology
is the following:

Theorem 4.3

(i) a compact subset need not be I-closed,

(i) a compact subset need not be bounded,

(iii) every I-closed and bounded subset is compact.

Proof :

(1) Being finite, the subset {1, 2, 3,....... ,n} of the usual I- space R of the second kind is compact. But it is not I-
closed, since the non- trivial I-closed subsets of R are of the form (-0, a], [b, ©©) and(-20,a] U [b, ), (a <
b). This proves (i).

(2) Anyl-open cover C of N must contain either R, or an I-open subset of the form (b, <),

b < 1. Any one of these two sets covers N. Hence N is compact.

Clearly, N is unbounded.

(3) Let F be an I-closed and bounded subset of R. Then F= @ or F = [a, b] or F = {c}, for some a, b,cE€ R,a<b.
® and {c} are obviously compact. The proof that [a, b] is compact is exactly similar to the corresponding proof
in topology.

Definition 4.3 A subset A of an |- space (X, | ) is said to be disconnected if there exist |- open sets I;and |, of X
suchthat AN ;NI = @ and 1, U1, DA.

A said to be connected if it is not disconnected.

Example 4.2 letX={a, b, c,d}and | ={X, D, {c}, {a, c}, {c, d},{a, b, c},{a, ¢, d}}. Then (X, | )is an I-space. Let A
={b, ¢, d}and B = {b, d}. Then A is connected and B is disconnected.

Example 4.3 In the usual I-spaces R of the first and the second kinds, all intervals are connected subsets.
Remark 4.1 Asintopological spaces, the closure of a connected subset of I-space is connected too.

Remark 4.2 Although in the usual topological space R and the usual U-space R, N, Z, Q are disconnected, in
the usual I-space R of the first kind, the above subsets of R are connected. However, these subsets are again
disconnected in the usual I-space R of the second kind.

A Housdorff (resp. normal, regular, completely regular) I-space is defined as in topology. The usual I-spaces R
of the first and the second kind are Hausforff.
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Remark 4.3. A compact subset of a Hausdorff topological space is closed. But a compact subset of a Hausdorff
I-space need not be I-closed.

Its truth follows from (2) of Theorem 4.2 as well as (1) of Theorem 4.3.

Remark 4.4 Unlike the usual topological space R and the usual U-space R, the usual I-spaces R of the first kind
and the second kind are normal but not regular.

Proof: Let X denote the usual I-space R of the first kind. The I-closed sets of X are R, @ and sets of the form (-
00, a]U[b, o0) with a < b. Let F = (-00, a]U [b, o0) and x& F. Then x € (a, b). But the only |- open set
containing F is R and it also contains x. Hence X is not regular.

The only pairs of disjoint I-closed sets of X are {R, @ },{F, @ } and { D, ® }. Then the disjoint |I-open sets R and
@ separate each of these pairs of disjoint I-closed sets. Thus, X is normal.

Now, let Y denote the usual I-space R of the second kind.

Then the I-closed sets of Y are R, @, and the sets of the form (-0, a], [b, ),

(-00, c]U[d, o0) with c < d. As in the case of X, if F = (-00, c]\U [d, o0) and x¢ F, then x € (c, d). The only I-
open set of Y which contains F is R which also contains x. Hence Y is not regular.

The only pairs of disjoint I-closed sets of Y are P, = {(- 20, a], [b, o)} (a<b), P, ={(-o0, a] U

[b, ), @D}, P; = {RDP} Then P; is separated by the each of disjoint I|-open sets

a+b a+b , _ . ,
—OO,T and T,OO , while P, and P is separated by the disjoint I-open sets R and @ . Hence Y is

normal.

5. CU - SPACES

Definition 5.1 X be a non empty set and let CU a collection of subsets of X such that

(i) X, D ecu,

(ii) C U is closed under countable unions.

Then C U is called a CU-structure on X and (X, CU) is called a CU-space. [Clearly, every topology T (resp. every
U-structure U ) on X is CU-structure on X and (X, T ) (resp. (X, U ) ) is a CU-space.] A CU-space, which is neither
a topological space, nor a U-space will be called a proper CU-space.

Example 5.1 Let X be an uncountable set and let CU consists of X, ® and all countable unions of finite subsets
of X. Then (X, CU ) is a proper CU-space.

Example 5.2 The O algebra B of Borel sets on R is a proper CU-structure on R. Hence (R, B ) is a proper CU-
space.

To see this, we first note that every singleton subset of R belongs to B. Let A be a proper uncountable subset of
Q5 the set of irrationals. Then A = U{X}, A¢& B. So, Bis a proper CU-structure.

xeA
Example 5.3 let X = R, CU = { R, D, all countable unions of all closed intervals [a, b]}. Then (X, CU) is a CU-
space. C U properly contains the usual topology on R.
For,

0 0
1
(i) (a,b)= U U|:a +—.,b _E € C U and every proper open set in the usual topology of R is a countable

union of open intervals (a, b).
(ii) [a, b] € CU, but it does not belong to the usual topology of R.
Definition 5.2 The usual U-space R is also a CU- space. It is called the usual CU-space R.

Definition 5.3 The closure of A written A, is the subset of X consisting of the elements x such that for each
CU-open set G containingx, GNAZ D .i.e, A ={xeX| foreachGe CUwithxeG, GNA=D}.

6. CUI- SPACES

Definition 6.1 Let X be a non- empty set. A collection CUI of subsets of X is called a

CUl-structure on X if X, @ € CUl and CUI is closed under countable union, and finite intersection. Then (X,CUI
) is a CUl-space.
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Examples 5.1 and 5.2 of CU-spaces are examples of CUl-spaces too.
Example 6.1 Let X =R and CU ={R, @, and the infinite countable subsets of R}.Then

(X, CU) is a CU-space. LetA={ne Z |— oo<n<5}and

B={ne zZz |—7<n<oo}. Then A,Be CU. ANB={-6,-5,-4,-3,-2,-1,0,1,2,3,4}¢& CU. (X,CU )is a
proper CU-space but not I-space.
Example 6.2 Let X =RandC = {R, @, U {(n,0)|n € 2}, U{(-%0, n)|n €2}, W{[(M,0) U (—e0,n), m,n €Z}}.

Then (R, C) is a U- space and so, a CU-space but not an I-space.

Example 6.3 Let X=Nor,Z and | ={X, D, all finite subsets of X}.

Then (X, | ) is an I-space but not a CU-space, and hence, not a U-space.

Definition 6.2 The usual topological space R is defined to be the usual CUI- space R.

7. FU- SPACES

Definition 7.1 Let X be a non-empty set and let FU be a collection of subsets of X such that

(i) X, decFu

(i) FU is closed under finite unions.

Then FU is called an FU-structure on X and (X, FU ) is called an FU-space.

Example 7.1 Topological spaces, U-spaces and CU-spaces are FU-spaces.

Definition 7.2 A FU-space which is not a CU-space (and hence neither a U-space nor a topological space) is
called a proper FU-space.

Example 7.2 Let X be an infinite set and let FU be the collection of all finite subsets of X. Then (X, FU) is a
proper FU-space.

Example 7.3 Let X be R and FU the collection of all finite union of sets of the form (-00, a) and (b, ©©). Then
(X, FU) is FU-space.

Definition 7.3 The usual FU-space R is R with the FU-structure consisting of R, @, and all finite unions of the
sets of the form (-0, a), (b, o) and (c, d).

We thus note:

Remark 7.1 The FU-structure of the usual FU-space R consists precisely of the sets R, @ and sets of the form
(-00,a), (b, 00), (-00,a) U (b, ©) (a < b), (as, b1) U (ay, by) U ---U(a, b,), for some positive integer r with a; <
b, 1<i<r,and (-00,a) U (b,00) U (ay, by) U (a, by) U---U(a, b), (a<a<bi<a,<by<------ <a;<bs<b)
for some positive integer s.

Definition 7.4 Let (X, FU) be an FU-space and let A be a subset of X. For x € X, x is called an interior point of A if
XE G C A, for some FU-open set G in X.

Definition 7.5 The set of all interior points of A is called the interior of A, and is denoted by IntA.

Remark 7.2 Unlike in topological spaces, IntA need not be FU-open in an FU-space.

®
To see this, let us consider the usual FU-space R. Let A = U (2n,2n +1).
n=1

Then, A = IntA . But A is not FU-open.

Remark 7.3 However, for every FU-open set A in an FU-space, A = IntA.

The FU-closed sets of X are the complements of FU-open sets.

Definition 7.6 The FU-closure K of a subset A of an FU-space X is defined by
A = {xe X|X € G for each FU-open set Gin X with GMA # @ }.

Theorem 7.1 Let X be an FU-space,

(i) For every FU-closed set F of X, E =F,

(i) For a subset A of X, K need not be FU-closed.

Proof: (i) Let x€ F. If xgF, then x€F". Now x€& F and since F° is FU-open, and x€F, FF N"Fz=®d, a
contradiction. Hence x € F.
(i) Let X be the usual FU-space Rand A= (1, 2) U (3, 4).
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Then, A =1, 2] W3, 4]. But this is not an FU-closed set in X, since the FU-closed subsets of X are precisely R,
@ and sets of the form [a, b], [-90, a;] U [ay, by] U ---U]a,, b,.1] U [b,, 0](a;< by <a, < by < == <a,<b,),
[a,b1] U [ay, by] W+ UJag, bg], a1< bi<a; <by<------ <as<b.

Definition 7.7 A subset A of an FU-space X is called compact if every FU-open cover has a finite subcover.
Example 7.4 In the usual FU-space R, N and the intervals [a, b] are compact subsets.

The proof that [a, b] is compact is similar to that in topology.

To see that N is compact, we note that every FU-open cover of N must contain a FU-open set of the
form (a, ©©), a < 1. Then, at most [a] more FU-open sets of the cover are needed to cover A, where [a] is the
largest positive integer less than or equal to a. Thus, N is compact.

Theorem 7.2 Every FU-closed subsets of a compact FU-space is compact.

The proof is as in topology.

Remark 7.4 The following is the FU-version of the Heine-Borel Theorem in topology: Let X be the usual FU-
space R.

(i) Every FU-closed and bounded set in X is compact,

(i) A compact set in X may be neither FU-closed nor bounded.

Proof: (i) It follows from the nature of the FU-closed sets in X that every non-empty FU-closed bounded set in
X is of the form [a;,b4] U [a,, by] U -+ - U |a,, b,] which is obviously compact.

(ii) We have proved above (in Example 7.4) that N is compact.

However, N is neither FU-closed nor bounded.

Definition 7.8 A non-empty subset A of an FU-space X is called disconnected if there exist FU-open sets G,
and Gy, suchthat AN G, #DP = ANG,,ANG, NG, = D,Ac G, UG,. Ais called connected if it is not
disconnected.

Example 7.5 In the usual FU-space R, the connected subsets are precisely R, @ and sets of the form (-0, a),
(b, o©) and (c, d).

As in topology, we have every FU- continuous image of a connected set is connected.

8. FUI- SPACES

Definition 8.1 Let X be a non-empty set. A collection FUI of subsets of X is called an

FUl-structure on X if

(i) X, ® e FUI

(i) Ul is closed under finite unions and finite intersections.

Then FUI is called an FUI-structure on X and (X, FU | ) is called an FUIl-space.

Example 8.1 Every topological space and every CUl-space is an FUI-space.

Example 8.2 Let X be an infinite set and FUI = {R, @ ,all finite subsets of X}. Then, (X, FUI ) is an FUl-space
which is neither a CUI-space nor a topological space.

Example 8.3 Let X = R and FUI = The subsets of R obtained from the sets of the form (-0, a) and (b, o0)
under finite unions and intersections.

Then, (X, FUI ) is an FUI-space. It is called the usual FUl-space R. We note that here FUI consists of R, ® and
the sets of the form (-0, a), (b, o) and (-0, a) U

(b, 00) (a<b), (ay, b1) U (ay, b)) - U(a, b,), and (-00, a) U (b,00) U (ay, by) U (ay, by) U+

(as, by), (@a<aj<bi<a;<by<ee---- <as<bg<b) .Thus, the usual FUI-space is exactly the same as the usual FU-
space R.

Remark 8.1 Let X be a FUI-space. As in the case FU-spaces,

(i) for each FUI-open subset A of X, A = IntA;

but (ii) InA need not always be FUI-open.

The first part is obvious and the second part follows the example in Remark 7.2.

Remark 8.2 Example 7.3 is an FU-space but not an FUI-space. Thus, the class of FU-spaces and the class of FUI-
spaces are distinct.

Theorem 8.1 Let X be an FUl-space,

(i) For every FUI-closed set Fof X, F=F,
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(i) For a subset A of X, A need not be FUI-closed.

The proof is exactly similar to that of Theorem 7.1.

All the statements about the compact sets and the connected sets proved earlier for an FU-space, and in
particular the statement corresponding to the Heine-Borel Theorem, hold for an FUI-space.
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